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Abstract: Galaxolide (HHCB) and tonalide (AHTN), two popular synthetic musk compounds, have 

been widely detected in the environment, which would pose a potential hazard to the ecosystem. To 

develop a robust analytical methodology for such emerging micropollutants is very important to 

investigate their presence and transformation in water. In this study, an analytical process of solid-phase 

extraction (SPE) coupled with gas chromatography (GC) was developed to determine trace levels of 

HHCB and AHTN in water. Specifically, the target compounds in test solutions were firstly extracted 

by SPE cartridges, followed by an eluting and redissolving process. Then, the enriched solutions were 

analyzed using a GC system with a flame ionization detector (FID). This analytical process 

demonstrated good recoveries for both compounds with mean recoveries of 104.7 ± 5.1% and 102.9 ± 

4.8% for HHCB and AHTN, respectively. Above all, the SPE-GC analytical process proposed in this 

study provides a reliable method to assess the performance of future treatment trials.  

Keywords: galaxolide (HHCB); tonalide (AHTN); solid phase extraction (SPE); gas chromatography 
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1. Introduction 

Due to their low price and long-lasting flavor, synthetic musks have been widely used 

as fragrance ingredients in daily necessities, such as detergent, perfume, air freshener, and 

cosmetics [1-4]. Of the synthetic musk compounds, galaxolide (HHCB) and tonalide (AHTN) 

are the largest volume products, accounting for over 90% of the global market [5]. Due to their 

widespread use, synthetic musks are discharged after use via domestic wastewater and enter 

the wastewater treatment plants (WWTPs), and most of them are expected to be released into 

the environment since the elimination of synthetic musks in WWTPs is not efficient [6-9]. 

Therefore, research on their occurrence, transportation, toxicity, and treatment has become very 

popular in recent years [10-15]. In this study, HHCB and AHTN (Table 1) in simulating water 

samples were detected simultaneously by a simple solid-phase extraction (SPE) and gas 

chromatography (GC) method, which would offer a validated analytical method for the further 

performance assessment of HHCB and AHTN removal in treatment trials. 
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Table 1. Information about HHCB and AHTN. 

Name CAS NO Log P Chemical structure Ref. 

HHCB 1222-05-5 5.3 

 [16] 

AHTN 1506-02-1 5.4 

 

2. Materials and Methods 

Analytical grade HHCB and AHTN standard solutions (10 mg L−1, 1 mL) were 

purchased from J&K Chemical (Germany). Phenylethyl propionate, which was utilized as the 

internal standard, was also obtained from J&K Chemical (Germany). All other chemicals and 

reagents were purchased from Sinopharm (China) and were applied without further 

purification. In order to investigate the accuracy and precision of the proposed SPE-GC 

analytical method, HHCB and AHTN test solutions of various concentrations were prepared 

and subjected to all the analytical processes. The concentrations of each target compound were 

set at six levels: 2, 4, 8,10, 12, and 16 μg L−1. The concentration of internal standard was 200 

μg L−1. Five parallel samples were prepared for each concentration. 

Test solutions were filtered using 0.45 μm membrane filter (Anpel, China) and then 

subjected to SPE extraction. The SPE cartridges utilized in this study were Generik H2P 60 

mg/3 mL tubes (Sepax Technologies, China). For all test solutions, 50 mL solution was used 

for the SPE extractions with an automatic SPE432-EVA32 SPE working station (Pretyco, 

China). Generally, the extraction protocol was: (1) conditioning: 10 mL methanol; (2) 

equilibrating: 6 mL water + 6 mL acidified water (HCl 0.1% v/v); (3) loading samples: 50 mL 

of test solutions were extracted at a flow rate of 5 mL min−1; (4) washing: 6 mL water at a flow 

rate of 3 mL min−1; and (5) elution: 5 mL methanol. The elutes were evaporated using a 

nitrogen blower (Pretyco, China) to dryness at 55℃ under gentle nitrogen flow and then re-

constituted to 1 mL by cyclohexane. The final enriched samples were filtered using 0.45 μm 

nylon syringe filters (Anpel, China) and then subjected to further GC analysis. 

An Agilent 7820A GC system (Agilent, USA) with a flame ionization detector (FID) 

was employed to measure the target compounds. Target compounds were separated by an 

Agilent HP-88 capillary column (30 m × 0.25 mm i.d., 0.25 μm film thickness, Agilent, USA) 

with nitrogen as carrier gas at a flow rate of 1 mL/min. The oven temperature program was as 

follows: initial temperature of 120 °C (held for 4 min), then increased to 320 °C at a rate of 15 

°C min−1, and held at 320 °C for 3 min. The injection volume was set as 1 μL. 

3. Results and Discussion 

HHCB, AHTN, and the standard internal chemical were separated in the GC using the 

HP-88 capillary column. As shown in Figure 1, the gradient increase of the column temperature 

led to a clear separation of three chemicals within 13 min. Phenylethyl propionate came out 

firstly from the column with a retention time of 7.036 min. AHTN was eluted secondly at 

11.568 min and followed by HHCB at 12.069 min. 
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Figure 1. GC chromatographs of HHCB, AHTN and internal standard (HHCB, AHTN:0.8 mg L−1; internal 

standard: 0.2 mg L−1). 

As shown in Table 2, the calibration curves of HHCB and AHTN covering 0.1~1 mg 

L−1 demonstrated good coefficients of correlation (r2 > 0.99). The HHCB and AHTN spiked 

concentrations in test solutions were quantified according to their specific linear regression 

equations. The calculated recoveries of each sample were obtained based on detected and 

spiked quantities of target compounds in the test solutions and are presented in Table 3. The 

results demonstrated good recoveries of HHCB and AHTN of various initial concentrations, 

with overall recoveries 104.7 ± 5.1% and 102.9 ± 4.8%, respectively. 

Table 2. Calibrations curves of HHCB and AHTN. 

Chemical 

compound 

Equation of linear 

regression 

Correlation 

coefficient 
Linear range（mg L−1） LOD（mg L−1） 

HHCB y = 0.2215x + 0.0282 R² = 0.9956 
0.1~1 

0.07 

AHTN y = 0.1759x + 0.0038 R² = 0.9991 0.08 

Table 3. Recoveries of HHCB and AHTN with various concentrations. 

Test solutions HHCB AHTN 

2 μg L−1 107.1 ± 5.3% 103.1 ± 3.8% 

4 μg L−1 103.4 ± 3.7% 102.2 ± 2.1% 

8 μg L−1 103.3 ± 3.8% 104.1 ± 5.3% 

10 μg L−1 106.0 ± 1.8% 101.8 ± 6.1% 

12 μg L−1 108.9 ± 7.9% 103.3 ± 4.9% 

16 μg L−1 99.3 ± 7.8% 102.7 ± 6.7% 

Overall recovery 104.7 ± 5.1% 102.9 ± 4.8% 
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Table 4. Comparison of recoveries with other analytical methods. 

Method 
Water 

matrix 

Recovery, % 
Ref. 

HHCB AHTN 

Liquid-liquid microextraction (LLME) + 
GC-MS/MS 

Wastewater 97±3~102±11 71±7~99±3 

[17] 
Tap water 75±2~97±14 91±3~106±12 

Sea water 96±5~107±8 92±11~101±4 

River water 101±15~105±3 83±3~96±7 

Liquid-liquid microextraction (LLME) + 

GC-MS/MS 

Wastewater 88±7~113±5 84±4~114±6 

[18] 
Tap water 93±4~106±1 91±3~106±1 

Sea water 91±2~115±1 102±3~112±4 

River water 86±4~117±4 85±5~118±9 

Solid-phase microextraction (SPME) + GC-

MS/MS 
River water 102 ± 1 95.4 ± 7.1 [19] 

SPE+GC-LID Pure water 99.3 ± 7.8~108.9 ± 7.9 101.8 ± 6.1~104.1 ± 5.3 This study 

In comparison with other studies (Table 4), the established SPE-GC analytical methods 

show good recoveries of HHCB and AHTN, which is reliable for determining residual 

concentrations of HHCB and AHTN in test solutions. 

4. Conclusions 

An SPE-GC analytical process was established in this study to detect HHCB and AHTN 

in test solutions with good recoveries, which were 104.7 ± 5.1% and 102.9 ± 4.8%, 

respectively. It offers a validated analytical method for the further assessment of HHCB and 

AHTN removal in test solutions. 
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