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Abstract: The temperature effect of 4-ethyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide (EOPT) on 

the mild steel corrosion in 1 M HCl solution was studied by gravimetric techniques at temperatures 

varying from 303 to 333 K. The investigated inhibitor concentrations were started from 100 ppm and 

ended with 500 ppm. The inhibition efficiency increased with the increase of the concentration of the 

inhibitor and reached 96.1% with the concentration of 500 ppm at 303 K and decreased to 66.3% at 333 

K. Moreover, the inhibition efficiencies decreased with the temperature increase for both acids. Using 

the Langmuir adsorption isotherm for the adsorption of this inhibitor on the mild steel surface was 

determined. EOPT was found to be an efficient corrosion inhibitor due to its structural molecules, which 

contain sulfur, nitrogen, and oxygen, hetero atoms an addition to the aromatic ring. 

Keywords: thiosemicarbazide; corrosion inhibitor; mild steel; inhibitive efficacy; temperature effect; 
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1. Introduction 

Mild steel is frequently employed in a variety of manufacturing industries. Pickling, 

industrial acid cleaning, acid descaling, oil well acidifying, and other industrial procedures 

typically involve acidic solutions [1–9]. Corrosion prevention systems emphasize using natural 

and/or synthetic organic compounds that have little or no negative impact on the environment. 

Metal corrosion rates are reduced, saving resources and money in industrial applications while 

improving equipment life and reducing the dissolution of hazardous metals from components 

into the environment [10-16]. One of the most practical approaches for preserving metals from 

corrosion is using organic compounds as corrosion inhibitors, which is becoming frequently 

common. Existing evidence indicates that organic inhibitors act through adsorption and protect 

iron by forming a coating [17-23]. Organic molecules with highly electronegative 

heterogeneous atoms, such as phosphorous, sulfur, nitrogen, and oxygen, or those with many 

bonds acting as adsorption centers, work well as corrosion inhibitors [24–31]. Herein, we used 

weight loss measurements and the effect of temperature on the corrosion inhibition of mild 

steel to evaluate their behavior as a tested inhibitor for mild steel corrosion in 1.0 M HCl 

solution. 
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2. Materials and Methods 

2.1. Material preparation. 

The mild steel sample utilized for the research was regularly split into coupons of 4.5 

cm × 2.5 cm × 0.2 cm. Hydrochloric acid of analytical grade was diluted by double distilled 

water to the concentration of 1 M to be utilized as a corrosive solution. The chemical structure 

of the tested inhibitor is shown in Figure 1. 

 
Figure 1. Structure of 4-ethyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide (EOPT). 

2.2. Gravimetric analysis. 

All the experiments were carried out in 250 ml of 1 M HCl medium and open to the air, 

at 303 K with various concentrations of EOPT for 5 h exposure time. The coupon was polished 

with sandpaper, cleaned completely with doubled distilled water, acetone and finally dried in 

the oven. Finally, the coupons were thoroughly rinsed in distilled water, dried in the oven, and 

weighed accurately. The analyses were conducted three times individually, and the mean 

weight loss value was recorded [32-35]. From the gravimetric techniques, the rate of corrosion 

(𝐶𝑅), inhibition efficiency (IE%) and Surface coverage (𝜃) were determined according to 

Equations (1), (2), and (3), respectively [36-38]. 

𝐶𝑅 =
𝑚1 − 𝑚2

𝑎𝑡
                                                              (1) 

𝐼𝐸(%) =
𝐶𝑅𝑜 − 𝐶𝑅𝑖

𝐶𝑅𝑜
× 100                                         (2) 

𝜃 =
𝐶𝑅𝑜 − 𝐶𝑅𝑖

𝐶𝑅𝑜
× 100                                                    (3) 

where m1 and m2 are the coupons masses before and after corrosion, a is the coupon area, t is 

the exposure time, CRo and CRi are represent the corrosion rate in the absence and presence of 

the corrosion inhibitor, respectively. 

3. Results and Discussion 

3.1. Effect of temperature.  

Weight loss measurement data in the absence and presence of varying doses (100-500 

ppm) of the examined inhibitor at varied temperatures (303-333 K) were used to evaluate mild 

steel corrosion characteristics in 1M HCl solution. Investigation of the experimental findings 

in Figure 2 reveals that inhibitive efficacy increases with inhibitor concentration increasing up 

to 500 ppm concentration. After 500 ppm, the inhibitor concentration still relatively steady 

hence 500 ppm was considered as optimum concentration [39-44]. The assessed inhibitory 

activity decreases with increasing temperature. This behavior can be explained by the fact that 

the inhibitor acts by adsorbing its molecules on the metal surface, and the increase in 

temperature caused most of the adsorbed inhibitor molecules to be adsorbed, thus reducing the 

inhibitory efficacy. It is obvious from Figure 2 that the tested inhibitor is an excellent inhibitor 
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even at a concentration as minimum as 100 ppm. The inhibitive efficacy of the tested inhibitor 

at 500 ppm concentration was found to be 96.1%, while it was 66.3% at 333 K [45-48].  

 
Figure 2. Various corrosion rates and inhibitive efficacy in 1 M HCl on the surface of mild steel with different 

temperatures. 

3.2. Activation energy. 

Because various changes occur on the metal surface, such as rapid etching and inhibitor, 

adsorption and decomposition, and/or rearrangement, the effect of temperature on the inhibitor-

metal acid reaction is very complex. Weight loss coefficients in the absence and presence of 

the inhibitor at temperatures from 303 to 333 K were explored to determine the inhibitor 

adsorption and activation properties of mild steel surface corrosion processes in an acidic 

medium. The Arrhenius equation (Equation 4) is often used to describe the correlation between 

the rate of corrosion and metallic coupon in acidic [49-55] environments and temperature: 

𝐶𝑅 = 𝐴 𝐸𝑋𝑃(
−𝐸𝑎

∗

𝑅𝑇
)                 (4) 

where  𝐸𝑎
∗ is the activation energy, A is the constant, R is referred to the universal gas constant, 

and T is the solution temperature. 

 
Figure 3. Log corrosion rate (mm year−1) versus 1/T curves for mild steel dissolution in 1.0 M HCl in the 

absence and presence of 500 ppm of tested inhibitor. 
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The activation energy value can be evaluated from the Arrhenius plot slop (log v corr 

versus 1/T) as presented in Figure 3. Determined values of rate of corrosion rate and inhibition 

efficiency have been shown in Figure 2. As demonstrated from Figures 2 and 3, activation 

energy in the presence of the tested inhibitor is lower than that achieved in the absence of the 

tested inhibitor, meaning that the mild steel corrosion reaction is inhibited by the inhibitor and 

therefore confirms the chemisorption phenomenon [56-58]. Activation energy with a high 

value in the presence of tested inhibitors may increase the protected film thickness, enhancing 

the corrosion process's activation energy [59, 60].  

4. Conclusions 

The tested inhibitor, namely 4-ethyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide 

(EOPT), exhibits excellent inhibitive efficacy for the corrosion of mild steel in 1.0 M HCl 

solution. The inhibitive efficacy was observed to increase with increasing EOPT concentration. 

The inhibition efficiency decreases with the increase the temperature. 
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