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Abstract: In this work, the possibility for indirect electropolymerization of a monomer synthesized by 

an indirect electrosynthesis has been evaluated. Based on the reaction mechanism, the correspondent 

mathematical model has been developed and analyzed using linear stability theory and bifurcation 

analysis. It has been shown that in the case of indirect monomer electrosynthesis and 

electropolymerization, the polymer deposition is far more stable than for direct participation of the 

monomer in the electrochemical stage. The surface tends to be more developed. Yet, the electrochemical 

oscillations are expected to be less probable than in the case of the direct anodic process. 

Keywords: conducting polymers; electropolymerization; indirect cathodic electrodeposition; 

electrochemical oscillations; steady stable-state. 
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1. Introduction 

Electropolymerization is one of the most used synthetic techniques for conducting 

polymers [1–10]. It consists of conducting polymer deposition over an electrode surface in an 

electrochemical process.  
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Electropolymerization may be direct or indirect. In the first case, the monomer is 

oxidized or reduced directly, provoking a chain initiation and propagation. In the second case, 

the electrochemical stage yields a chain initiator, reacting with the monomer, yielding a 

polymer. The second path provides a more flexible conducting polymer formation, like in [11-

15]. For example, this is the unique possibility for polypyrrole and polythiophene formation on 

the cathode.  

In some cases, not only polymer but also a monomer may be formed by indirect 

electrosynthesis. Thus, the electrochemical system will be described by an electrochemical and 

two chemical reactions (1 – 3). If we consider, for simplicity, a cathodic process, it will be 

described as:  

A + ne-
→ In                        (initiator electrochemical formation) (1) 

M0  + In → M + A                           (monomer indirect formation)    (2) 

nM + In →Mn + A               (polymer indirect electrodeposition)    (3) 

As a matter of fact, the monomer, which undergoes an indirect electropolymerization 

on a specifically modified cathode, is also synthesized analogously, yielding a polymer. These 

processes may be accompanied by electrochemical instabilities (oscillatory and monotonic) 

[16, 17], capable of causing drastic changes in the resulting polymer changes.  

In this work, the theoretical description for the system described above is exposed. By 

the mathematical modeling and analysis, it is possible to investigate the steady-state stability 

conditions, like also to foresee the occurrence of electrochemical instabilities affecting the 

system. Also, the behavior of this system will be compared to similar ones [18–21]. 

2. Materials and Methods 

2.1. System and its modeling. 

Schematically, the exposed electrochemical system will be described as on Fig. 1:  
A

In

M
0

M

P

 
Figure 1.The scheme of the indirect monomer and polymer electrochemical synthesis. 

Taking this into account, to describe the behavior of the system, we introduce three 

variables:  

c – monomer precursor concentration in the pre-surface layer; 

m – monomer concentration in the pre-surface layer; 

v – chain initiator surface coverage degree.  
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To simplify the modeling, we suppose that the reactor is intensively stirred to neglect 

the convection flow. Also, we assume that the background electrolyte is in excess to neglect 

the migration flow. The diffusion layer is supposed to be of a constant thickness, equal to δ, 

and the concentration profile is supposed to be linear. 

It is possible to show that the behavior of the electrochemical process will be described 

as (4):  

{
 
 

 
 
𝑑𝑐

𝑑𝑡
=

2

𝛿
(
𝛥

𝛿
(𝑐0 − 𝑐) − 𝑟𝑚)

𝑑𝑚

𝑑𝑡
=

2

𝛿
(𝑟𝑚 − 𝑟𝑝)

𝑑𝑣

𝑑𝑡
=

1

𝑉
(𝑟𝑖 − 𝑟𝑚 − 𝑟𝑝)

                             (4) 

Herein, 𝛥 is the diffusion coefficient, c0 is the precursor bulk concentration, V is the 

chain initiator maximal surface concentration, and the parameters r are the correspondent 

reaction rates, calculated as:  

𝑟𝑚 = 𝑘𝑚𝑐𝑣                                          (5) 

𝑟𝑝 = 𝑘𝑝𝑚
𝑛𝑣                                         (6) 

𝑟𝑖 = 𝑘𝑖(1 − 𝑣) exp (−
𝑧𝐹𝜑0

𝑅𝑇
)                           (7) 

The parameters k are the correspondent rate constants, z is the number of the transferred 

electrons, φ0 is the potential slope in the double electric layer (DEL), F is the Faraday number, 

R is the universal gas constant, and T is the absolute temperature. 

In this work, the simplest system, in which the monomer doesn´t contain ionic 

functional groups capable of influencing DEL, is investigated. Therefore, the oscillatory 

behavior will be caused uniquely by the behavior on the electrochemical stage, and the polymer 

deposition will be realized in an efficient manner, as shown below. 

3. Results and Discussion 

To investigate the indirect cathodic electropolymerization behavior of an indirectly 

synthesized monomer, we analyze the equation-set (4), taking into account the algebraic 

relations (5 – 7), using linear stability theory. The steady-state Jacobian matrix members for 

this system will be exposed as (8):  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                               (8) 

in which: 

𝑎11 =
2

𝛿
(−

𝛥

𝛿
− 𝑘𝑚𝑣)                              (9) 

𝑎12 = 0                                      (10) 

𝑎13 =
2

𝛿
(−𝑘𝑚𝑐)                              (11) 

𝑎21 =
2

𝛿
(𝑘𝑚𝑣)                               (12) 

𝑎22 =
2

𝛿
(−𝑛𝑘𝑝𝑚

𝑛−1𝑣)                        (13) 

𝑎23 =
2

𝛿
(𝑘𝑚𝑐 − 𝑘𝑝𝑚

𝑛)                        (14) 

𝑎31 =
1

𝑉
(−𝑘𝑚𝑐)                          (15) 
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𝑎32 =
1

𝑉
(−𝑛𝑘𝑝𝑚

𝑛−1𝑣)                    (16) 

𝑎33 =
1

𝑉
(−𝑘𝑖 exp (−

𝑧𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘𝑖(1 − 𝑣) exp (−

𝑧𝐹𝜑0

𝑅𝑇
) − 𝑘𝑚𝑐 − 𝑘𝑝𝑚

𝑛)(17) 

As in [13, 14], the oscillatory behavior for this system is possible, and it will be caused 

uniquely by influences of the electrochemical reduction stage on DEL capacitances, described 

by the positivity of main-diagonal element jki(1-v) exp (-
zFφ0

RT
) (positive main-diagonal 

elements describe the positive callback). The oscillations are expected to be frequent, and their 

amplitude will strongly depend on the background electrolyte composition, including pH. 

Yet if those influences aren’t strong enough to influence the system’s behavior, the 

steady-state stability is safeguarded. It may be proved as shown below. To investigate the 

steady-state stability in this system, we apply the Routh-Hurwitz stability criterion to the 

equation-set (4). Avoiding the cumbersome expressions, we introduce new variables, rewriting 

the determinant as (18):  

4

𝛿2𝑉
|
−𝜅 − 𝛯 0 −𝛬
𝛯 −𝛲 𝛬 − 𝛴
−𝛯 −𝛲 −𝛺 − 𝛬 − 𝛴

|                       (18) 

Opening the brackets and applying the Det J<0 conditions, salient from the criterion, 

we obtain the steady-state stability requisite, exposed as (19):  

−(𝜅 − 𝛯)(2𝛲𝛬 + 𝛲𝛺) < 2𝛬𝛯𝛲          (19) 

Considering that all of the parameters mentioned in the inequation (19), accept of𝛺, are 

always positive, the right side of the expression (19) is always positive, and the left side is 

always negative if 𝛺 is maintained positive. As the parameter 𝛺 = 𝑘𝑖 exp (−
𝑧𝐹𝜑0

𝑅𝑇
) −

𝑗𝑘𝑖(1 − 𝑣) exp (−
𝑧𝐹𝜑0

𝑅𝑇
) is positive for the negative values of j, defining the fragility of the 

influences of the electrochemical stage on DEL ionic force, conductivity, and impedance, the 

steady-state stability condition is warranted to maintain stability if 𝛺 is positive. 

This defines an efficient conducting polymer deposition. The material is formed as a 

well-developed cabbage-like film, centered on the active sites of the initiator formation.  

The conductivity of the polymeric material will be strongly dependent on both the 

monomer or initiator nature.  

If the initiator has non-metallic nature (for example, nitrite, sulfite), the polymer 

adhesion over the cathode surface is augmented, but the conductivity remains diminished. 

Changing the electrode polarity, the polymer is doped, preserving both the high conductivity 

of a doped CP or the developed surface of a cathodically deposited conducting macromolecule.  

Yet if the initiator has metallic nature (manganese, vanadium, rhenium, and other, 

generally d- and f-element derivatives), the electropolymerization yields, in fact, a hybrid 

material with highly developed catalytic properties. It may be additionally doped by changing 

the polarity.  

As for the proper electrosynthesis process, it is either diffusion or kinetically controlled.  

The monotonic instability in this system is possible. It is manifested by an N-shaped 

fragment of the voltammogram. Its condition for this case is Det J =0, or (20):  

−(𝜅 − 𝛯)(2𝛲𝛬 + 𝛲𝛺) = 2𝛬𝛯𝛲          (20) 
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This model describes the case in which the cathodic reaction, yielding chain initiator, 

is realized on the surface. If the reaction is realized in the solution, the electrochemical reaction 

will not be accompanied by oscillatory and monotonic stability, as shown in [13]. 

4. Conclusions 

From the theoretical evaluation of the indirect electrochemical polymerization of an 

indirectly electrosynthetized monomer, it has been possible to conclude that the indirect 

electropolymerization of an indirectly electrosynthetized monomer tends to be more stable than 

the direct electrooxidation of the precursor and the monomer in the same conditions. As for the 

polymerization, it yields a well-developed macromolecule, with a cabbage-like morphology, 

centered on an initiator generation active sites. The electrochemical process tends to be either 

diffusion or kinetically controlled. The conductivity of the polymer depends on either monomer 

or initiator nature due to the possibility of metal-polymer formation in the case of metal 

derivative used as an initiator. The oscillatory behavior in this system is possible but less 

probable than for direct electropolymerization. It is only caused by the double electric layer 

influences of the electrochemical stage. 
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