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Abstract: Inhibition of Hsp90 disrupts the Hsp90 client protein complex, resulting in its breakdown. 

Phytochemicals from reported anticancer plants were screened against the orthosteric site of Hsp90. 

The lead compounds were subjected to the Lipinski rule of five to evaluate their drug-likeness. Three-

Dimensional Quantitative Structure-Activity Relationships (3D-QSAR), a mathematical model for the 

inhibition of Hsp90, was also derived. The lead compounds are guaiol from Cannabis sativa, actinidine 

from Anacadium occidentale, and choline from Tinospora cordifolia with docking scores of -

11kcal/mol, -12.1kcal/mol, and -10.8kcal/mol, respectively. The 3D-QSAR model generated is robust 

and thoroughly validated with a correlation coefficient R of 0.94 and R2 of 0.950. Actinidine, choline 

and, guaiol are novel and potent inhibitors of Hsp90.  They form interactions with key amino acid 

residues within the Hsp90 orthosteric site.  
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1. Introduction 

Molecular chaperones help assemble and correct the folding of polypeptide chains into 

their oligomeric structures [1]. Heat-shock proteins (Hsps) are made up of molecular 

chaperones that are upregulated in stressful conditions to avoid denaturation and inappropriate 

aggregation of proteins to maintain protein homeostasis [2]. Hsps also play pivotal roles in 

non-stressful conditions, in scores of housekeeping functions, from signal transduction, 

proliferation, metastasis, protein trafficking, and apoptosis [2]. The 90kDa heat shock protein 

(Hsp90) is an ATP-dependent molecular chaperone that malignant cells use to support 

activated oncoproteins [3]. Therefore, its implications on cancer have led to the emergence of 

its being considered a promising target for anticancer drugs. Though originally viewed with 

pessimism, Hsp90 inhibitors are now pursued by the pharmaceutical industry [3]. It has been 

observed that Hsp90 is over-expressed in many cancers.  

Irrespective of the advances in cancer treatments, developing safe and effective 

antineoplastic compounds remains a great challenge [4]. Plants and natural products continue 

to be employed in the management of cancer [5]. A good number of cancer drugs are from 

plants and natural products [6]. The failures coupled with the associated side effects of 

conventional neoplastic drugs continue to gather interest in plants as alternatives in neoplastic 

management. Epidemiological studies revealed the consumption of natural products decreases 
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the risk of cancer [7]. Many phytochemicals have been reported from medicinal plants to 

possess anticancer properties [8-10].  

In the present study, phytochemicals from reported anticancer plants, Cannabis sativa, 

Anacadium occidentale, Spondias mombin, Tinospora cordifolia, and Zingiber officinale were 

screened against the orthosteric site of Hsp90. The lead compounds were subjected to the 

Lipinski rule and ADME (absorption, distribution, metabolism, and excretion) screening to 

determine their drug-likeness. A 3D-QSAR model for the inhibition of Hsp90 was also derived. 

Molecular interactions of the leads within the orthosteric site of Hsp90 were also assessed. 

2. Materials and Methods 

2.1. Protein preparation for docking. 

The 3D crystallized conformation of the Hsp90 was downloaded from the Protein Data 

Bank (PDB) repository with the PDB ID of 2QG2 and a crystallographic resolution of 1.8Å. 

The protein was viewed with Pymol. Water molecules were removed from the protein. The 

protein's active site and the grid map were generated with Pymol AutoDock Vina, X= 3.59, Y= 

33.95, Z= 24.51 [11]. 

2.2. Generation of ligand library. 

A total of 400 phytochemicals characterized by six different anticancer plants; 

Tinospora cordifolia, Anacadium occidentale, Cannabis sativa, Zingiber officinale, Spondias 

mombim, and Oscimum gratisimum were obtained from the literature. The 2D structures of the 

ligands were downloaded in the SDF format from the NCBI PubChem database [12]. The 

structures of the compounds generated from each plant were catenated, and the 3D-pdb and 

pdbqt format of the ligands were generated using the babel and lig prep commands, 

respectively.  

Command line for catenation 

Cat *.sdf  >A.sdf  

Command line for converting to pdb 

babel *A.sdf output.pdb –h –r –m--gen3D  

Command line for converting to pdbqt 

For i in {1..n}; do lig_prep –l output.pdb output$[i] pdbqt; done 

Where A rep. the name of compound 

2.3. Molecular docking. 

The protein-ligand docking was carried out with Autodock Vina [11].                                                                                                                                  

The co-crystallized ligand was extracted, and the water molecules were removed. The 

phytochemicals were docked into the exact Hsp90 catalytic site as occupied by the co-

crystallized compound. Command lines in AutoDock Vina were used to carry out multiple 

docking of the phytochemicals. Command-line for docking. 

For i in {1…n}; do vina -- config name. vinaconfig.txt –ligand name ${i} pdbqt—out ${i} .out 

–log$[i] .out –log $[i].log; done       
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2.4. Validation of docking results. 

The docking scores were validated by determining the correlation between pIC50 values 

of known inhibitors of Hsp90 against their corresponding docking scores. The Hsp90 domain 

receptor sequences obtained from PubMed were blasted on the Chembl database 

(www.ebiac.uk/chembl). A total of 89 known inhibitors of Hsp90 with their corresponding 

pIC50 were downloaded in text format and converted to SDF format by Data Warrior version 

2. These were docked into Hsp90 orthosteric site. Positive correlation was set P < 0.01. The 

deviation of the lead compounds and the co-crystallized compound from the active site of 

Hsp90 was also evaluated. 

2.5. Lipinski and ADME. 

Lipinski's rule of five is a rule of thumb for predicting the drug-likeness and orally 

active compounds. Poor absorption or permeation is more likely when there are more than 5 

H-bond donors, 10 H-bond acceptors, molecular weight (MWT) greater than 500, and the 

calculated Log P (CLog P) greater than 5 (or MlogP>4.15) ([13].  The rule of five further 

describes molecular properties, which are vital to ascertain the pharmacokinetics of 

compounds. The lead compounds were subjected to the Lipinski rule of five to quantify their 

drug-likeness. The Mavin Viewer software was used to establish the conformity of lead 

compounds to the rule of five. The number of rotatable bonds and polar surface area, which are 

known to discriminate between orally active compounds and those that are not, for a large data 

set of compounds [14] were also generated. Compounds with 10 or fewer rotatable bonds and 

polar surface area equal to or less than 140Å² have good oral bioavailability [14]. 

2.6. Quantitative structure-activity relationship (QSAR). 

2.6.1. Data collection and descriptor calculation. 

The bioassay IC50 data for Hsp90 was downloaded from the Chembl database  

(http://ebi.ac.uk). The ‘Babel’ was used to convert the compounds to the PDB format. 

Molecular descriptors were generated with the chemistry development kit (CDK).  

2.6.2. Data pre-treatment 

The pre-treatment of the bioassay IC50 data was carried with the V-WSP algorithm [15]. 

This helps to remove co-linearity among the descriptors. 

2.6.3. Data set division: training and test sets. 

The data set of 100 Hsp90 inhibitors obtained was split into the training set and test set 

using the Kennard Stone algorithm [16]. The data set was separated into  70% training and 

30% test sets.  

2.6.4 Genetic algorithm and multiple linear regression. 

A genetic algorithm (GA) was used for model generation and selecting significant 

variables (descriptors) in the training set. Multiple Linear Regression (MLR) in IBM SPSS 
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(Statistical Package for the Social Sciences ) 21 was used for statistical computing and also to 

confirm the model from GA. 

3. Results and Discussion 

3.1. Molecular docking. 

The docking score of the co-crystallized ligand (A91) 3-({2-[(2-Amino-6-methyl-4-

pyrimidinyl)ethynyl]benzyl}amino)-1,3-oxazol-2(3H)-one against the catalytic site of Hsp9 

[17], -10.8 kcal/mol was used as the cut off for the selection of lead compounds. Molecular 

docking of phytochemicals from Tinospora cordifolia, Anacadium officianale, Spondias 

mombim, Oscimum gratissimum, Cannabis sativa and Zingiber officianale against Hsp90 

orthosteric site, generated 3 hits; choline from Tinospora cordifolia plant, guaiol from 

Cannabis sativa plant and actinidine from Anacadium occidentale plant with docking scores 

of -10.8 kcal/mol, -11 kcal/mol and -12.1 kcal/mol respectively (Table S1). It should be noted 

that both choline and guaiol have been reported to possess anticancer properties [18-20]. 

3.2. Validation of docking scores. 

The analysis of the correlation coefficient of the pIC50 of experimentally determined 89 

inhibitors of Hsp90, obtained from chembl ((https://www.ebi.ac.uk/chembl/) and their 

corresponding docking scores show there is a positive correlation of .667 between pIC50 and 

their docking scores at p<0.01 (Table S2 and Figure S1). There is no deviation of the lead 

compounds and the co-crystallized compound from the orthosteric site of Hsp90 (Figure 1). 

All these show that the molecular docking results are correct and can predict the inhibitory 

potentials of compounds with Hsp90. 

 
Figure 1. Binding pocket of the Hsp90 with actinidine, (yellow) choline (purple), guaiol (orange), and the co-

crystallized ligand (red). 

3.3. Lipinski and ADME screening. 

According to Lipinski et al., 2001 [13], for a drug to be orally active, the number of 

hydrogen bond acceptors should be ≤10, Hydrogen bond donor ≤5, the number of rotatable 

bonds should be ≤10, the partition coefficient (XLogP) should be ≤5, the molecular weight 

should be <500and the polar surface area should be <140Å2. All the 3 hits generated obey 

Lipinski’s rule (Table S3). 
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3.4. The QSAR analysis. 

Quantitative structure-activity relationship (QSAR) is a statistical procedure, which 

seeks to find a significant correlation between structure and function. The training set used in 

this case was seventy known inhibitors of Hsp90. Genetic algorithm and IBM SPSS software 

for statistical computing were used for the MLR analysis and generation of the model.  

Table 1. Model Summary; Showing R (the multiple correlation coefficients) value R square (the coefficient of 

determination) value, Adjusted R square, and Durbin Watson value. 

R R Square Adjusted R Square 

.974 .950 .925 

a. Predictors: (Constant), C1SP2 

b. Predictors: (Constant), C1SP2, WTPT-5, Weta1.unity, C3SP2, FPSA-1, SCH-7, khs.sCH3, WK.unity, ATSc1, SPC-4 

c. Dependent Variable: P 

 

There is a very high positive Pearson Correlation, R, 0.974 (Table 1). This indicates a 

high correlation between the dependent variable (pIC50) and the independent variables. The R 

square value of 0.950 demonstrates the QSAR model could account for 95% of the variation 

of the pIC50. The adjusted R2 shows how the model generalizes, that is, external validation of 

the model. The adjusted R2 is close to the R2 value (the difference between the R2 value and the 

adjusted R2 value is 0.025); this signifies that the model experiences an insignificant 2.5% 

shrinkage in predicting external pIC50. The closeness of the adjusted R2 value to the R2 value 

shows that the cross validity of the model is excellent. Figure S2 shows homoscedasticity; the 

variables are very close to the line; hence, the model is unbiased. A plot of the observed pIC50 

and the predicted pIC50 showed a very strong positive correlation, R2 0.950. This demonstrates 

that the model has strong predictability, robustness, and validity (Figure 2, Table S4).  

3.4.1. Generation of QSAR Model. 

The QSAR model (equation 1) generated from the Genetic algorithm (GA) is the same 

as obtained from the MLR in  IBM SPSS. This validated the accuracy of the model (1). 

pIC50 = (15.268) + 0.669 ∗ CISP2) + (−3.726 ∗ Weta1. 𝑢𝑛) + (0.098 ∗ WTPT − 5) +

(−0.178 ∗ 𝑘khs. Sch3) + (−4.159 ∗ SCH − 7) + (−1.846 ∗ ATSC1) + (−4.58 ∗ FPSA −

1) + (6.563 ∗ WK. Unity) + (0.85 ∗ C3SP2) + (0.58 ∗ 𝑆PC − 4)………….1 

 
Figure 2.  Observed pIC50 values against the predicted pIC50 Values. 
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3.5. Molecular docking interactions of the leads and the co-crystallized compound. 

The leads formed various interactions with cogent amino acids residues in the 

orthosteric site of Hsp90 (Figures 3-6, Table 2). Actinidine forms three hydrophobic 

interactions with Leu-103, Leu-107, Trp-162, and one pie interaction with Phe-138 (Figure 4). 

Choline forms two hydrogen bond interactions with Leu-48 and Asp-93 and one salt bridge 

interaction with Asp-93 (Figure 5). Guaiol forms only two hydrophobic interactions with Leu-

107, Phe-138 (Figure 6). The co-crystallized forms three hydrophobic interactions with Leu-

48, Leu10, and Phe-138, two pie stacking interactions with Phe138, and Trp-162, one salt 

bridge interaction Asp-93, two hydrogen bond interactions with Tyr-139 and Tyr-184 (Figure 

3). The extensive interactions of the co-crystallized, 3-({2-[(2-Amino-6-methyl-4-pyrimidinyl) 

ethynyl] benzyl} amino)-1,3-oxazol-2(3H)-one within the Hsp90 orthosteric site is probably 

responsible for its inhibitory potentials on Hsp90 [17]. The topmost hit, actinidine, shares some 

remarkable amino acids residues with the co-crystallized ligand, Leu-107, and Phe-138, hence 

its probable high binding energy. Choline forms two hydrogen bonds and one salt bridge 

interactions with the amino acid residues within the Hsp90 orthosteric site. In addition, guaiol 

share similar hydrophobic interactions with the co-crystallized, Leu-107 and Phe-138, which 

might be responsible for its inhibition of Hsp90. 

 
Figure 3. A. Interactions of the co-crystallized ligand, 3-({2-[(2-Amino-6-methyl-4-

pyrimidinyl)ethynyl]benzyl}amino)-1,3-oxazol-2(3H)-one (red) with key residues at the catalytic site of Hsp90, 

the dotted red lines represent the hydrophobic interactions, the blue lines represent hydrogen bonds interactions, 

the yellow line represents salt bridge while the green and grey lines represent pie stacking. 

 
Figure 4. Interactions of actinidine (smudge-green) with key residues at the catalytic site of Hsp90, the dotted 

red lines represent the hydrophobic interactions while the green line represents pie stacking. 
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Figure 5. Interactions of choline (orange) with key residues at the catalytic site of Hsp90, the blue lines 

represent the hydrogen bond interactions while the dotted yellow line represents the salt bridge. 

 
Figure 6. Interactions of guaiol (light blue) with key residues at the catalytic site of Hsp90, the dotted red lines 

represent the hydrophobic interactions. 

Table 2. Molecular Interactions of the Hits within the Orthosteric site of Hsp90. 

 Hydrophobic Interaction  Stacking Salt Bridges Hydrogen Bonds 

Co-crystallized-Hsp90 Leu-48, Leu107, Phe-138 Phe138, Trp-162 Asp-93 Tyr-139, Tyr-184 

Actinidine-Hsp90 Leu-103, Leu-107, Trp-162 Phe-138   

Choline-Hsp90   Asp-93 Leu-48, Asp-93 

Guaiol-Hsp90 Leu-107, Phe-138    

4. Conclusions 

Hsp90 is a therapeutic target for the treatment of cancer. A thoroughly validated and 

robust model for the inhibition of Hsp90 is derived herein.  Molecular docking analysis 

revealed choline, actinidine, and guaiol as potential novel inhibitors of Hsp90. They form 

critical interactions with key residues that are pertinent to the inhibition of Hsp90. They are 

drug-like inhibitors of Hsp90. The mechanisms of their inhibitory potentials on Hsp90 should 

be exploited. 

Funding 

This research received no external funding. 

Acknowledgments 

The author acknowledges the effort of Dr. O.E. Oyeneyin towards the research. 

Conflicts of Interest 

The authors declare no conflict of interest. 

https://doi.org/10.33263/LIANBS113.38713886
https://nanobioletters.com/


https://doi.org/10.33263/LIANBS113.38713886  

 https://nanobioletters.com/ 3878 

References 

1. Webster, J.M.; Darling, A.L.; Uversky, V.N.; Blair, L.J. Small Heat Shock Proteins, Big Impact on Protein 

Aggregation in Neurodegenerative Disease. Frontiers in Pharmacology 2019, 10,  

https://doi.org/10.3389/fphar.2019.01047.  

2. Scieglinska, D.; Krawczyk, Z.; Sojka, D.R.; Gogler-Pigłowska, A. Heat shock proteins in the physiology and 

pathophysiology of epidermal keratinocytes. Cell Stress and Chaperones 2019, 24, 1027-1044,  

https://doi.org/10.1007/s12192-019-01044-5.  

3. Jego, G.; Hermetet, F.; Girodon, F.; Garrido, C. Chaperoning STAT3/5 by Heat Shock Proteins: Interest of 

Their Targeting in Cancer Therapy. Cancers 2020, 12, https://doi.org/10.3390/cancers12010021.  

4. Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: current perspectives and 

new challenges. Ecancermedicalscience 2019, 13, https://doi.org/10.3332/ecancer.2019.961.   

5. Chota, A.; George, B.P.; Abrahamse, H. Potential Treatment of Breast and Lung Cancer Using Dicoma 

anomala, an African Medicinal Plant. Molecules 2020, 25, https://doi.org/10.3390/molecules25194435.  

6. Mintah, S.O.; Asafo-Agyei, T.; Archer, M.A.; Junior, P.A. A.; Boamah, D.; Kumadoh, D.; Appiah, A.; Ocloo, 

A.; Boakye, Y.W.; Agyare, C. Medicinal plants for treatment of prevalent diseases. Pharmacogn. Med. Plants. 

2019, 1-19, https://doi.org/10.5772/intechopen.82049.  

7. Key, T.J.; Bradbury, K.E.; Perez-Cornago, A.; Sinha, R.; Tsilidis, K.K.; Tsugane, S. Diet, nutrition, and 

cancer risk: what do we know and what is the way forward? BMJ 2020, 368, 

https://doi.org/10.1136/bmj.m511.  

8. Akinloye, O.; Akinloye, D.; Lawal, M.; Mujidat; Shittu, T.; Metibemu, D.S. Terpenoids from Azadirachta 

indica are potent inhibitors of Akt: Validation of the anticancer potentials in hepatocellular carcinoma in male 

Wistar rats. Journal of Food Biochemistry 2020, 45, https://doi.org/10.1111/jfbc.13559.   

9. Metibemu, D.S.; Akinloye, O.A.; Akamo, A.J.; Okoye, J.O.; Ojo, D.A.; Morifi, E.; Omotuyi, I.O. Carotenoid 

isolates of Spondias mombin demonstrate anticancer effects in DMBA-induced breast cancer in Wistar rats 

through X-linked inhibitor of apoptosis protein (XIAP) antagonism and anti-inflammation. Journal of Food 

Biochemistry 2020, 44,  https://doi.org/10.1111/jfbc.13523.  

10. Metibemu, D.S.; Akinloye, O.A.; Akamo, A.J.; Okoye, J.O.; Ojo, D.A.; Morifi, E.; Omotuyi, I.O. VEGFR-2 

kinase domain inhibition as a scaffold for anti-angiogenesis: Validation of the anti-angiogenic effects of 

carotenoids from Spondias mombin in DMBA model of breast carcinoma in Wistar rats. Toxicology Reports 

2021, 8, 489-498, https://doi.org/10.1016/j.toxrep.2021.02.011.  

11. Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring 

function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455-461, 

https://doi.org/10.1002/jcc.21334.  

12. Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, 

B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem Substance and Compound databases. Nucleic Acids 

Res. 2015, 44, D1202-13.  

13. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to 

estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 

23, 3-25, https://doi.org/10.1016/s0169-409x(00)00129-0.  

14. Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.;  Kopple, K.D. Molecular properties that 

influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615-2623, 

https://doi.org/10.1021/jm020017n.  

15. Ballabio, D.; Consonni, V.; Mauri, A.; Claeys-Bruno, M.; Sergent, M.; Todeschini, R. A novel variable 

reduction method adapted from space-filling designs. Chemom. Intell. Lab. Syst. 2014, 136, 147-154, 

https://doi.org/10.1016/j.chemolab.2014.05.010.  

16. Todd, M.M.; Arten, P.; Douglas, M.Y.; Muratov, E.N.; Golbraikh, A.; Zhu, H.; Tropsha, A. Does Rational 

Selection of Training and Test Sets Improve the Outcome of QSAR Modeling? J. Chem. Inf. Model. 2012, 

52, 2570-2578, https://doi.org/10.1021/ci300338w.   

17. Huth, J.R.; Park, C.; Petros, A.M.; Kunzer, A.R.; Wendt, M.D.; Wang, X.; Lynch, C.L.; Mack, J.C.; Swift, 

K.M.; Judge, R.A.; Chen, J.; Richardson, P.L.; Jin, S.; Tahir, S.K.; Matayoshi, E.D.; Dorwin, S.A.; Ladror, 

U.S.; Severin, J.M.; Walter, K.A.; Bartley, D.M.; Fesik, S.W.; Elmore, S.W.; Hajduk, P.J. Discovery and 

Design of Novel HSP90 Inhibitors Using Multiple Fragment-based Design Strategies. Chemical Biology & 

Drug Design 2007, 70, 1-12, https://doi.org/10.1111/j.1747-0285.2007.00535.x.  

18. Salehi, B.; Fokou, P.V.; Yamthe, L.R.; Tali, B.T.; Adetunji, C.O.; Rahavian, A.; Mudau, F.N.; Martorell, M.; 

Setzer, W.N.; Rodrigues, C.F.; Martins, N.; Cho, W.C.; Sharifi-Rad, J. Phytochemicals in Prostate Cancer: 

From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients 2019, 11, 

https://doi.org/10.3390/nu11071483.  

19. Yang, Q.; Wu, J.; Luo, Y.; Huang, N.; Zhen, N.; Zhou, Y.; Sun, F.; Li, Z.; Pan, Q.; Li, Y. (-)-Guaiol regulates 

RAD51 stability via autophagy to induce cell apoptosis in non-small cell lung cancer. Oncotarget. 2016, 7, 

62585–62597, https://doi.org/10.18632/oncotarget.11540.  

20. Tomko, A.M.; Whynot, E.G.; Ellis, L.D.; Dupré, D.J. Anti-Cancer Potential of Cannabinoids, Terpenes, and 

Flavonoids Present in Cannabis. Cancers 2020, 127, https://doi.org/10.3390/cancers12071985.  

https://doi.org/10.33263/LIANBS113.38713886
https://nanobioletters.com/
https://doi.org/10.3389/fphar.2019.01047
https://doi.org/10.1007/s12192-019-01044-5
https://doi.org/10.3390/cancers12010021
https://doi.org/10.3332/ecancer.2019.961
https://doi.org/10.3390/molecules25194435
https://doi.org/10.5772/intechopen.82049
https://doi.org/10.1136/bmj.m511
https://doi.org/10.1111/jfbc.13559
https://doi.org/10.1111/jfbc.13523
https://doi.org/10.1016/j.toxrep.2021.02.011
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1016/s0169-409x(00)00129-0
https://doi.org/10.1021/jm020017n
https://doi.org/10.1016/j.chemolab.2014.05.010
https://doi.org/10.1021/ci300338w
https://doi.org/10.1111/j.1747-0285.2007.00535.x
https://doi.org/10.3390/nu11071483
https://doi.org/10.18632/oncotarget.11540
https://doi.org/10.3390/cancers12071985


https://doi.org/10.33263/LIANBS113.38713886  

 https://nanobioletters.com/ 3879 

Supplementary Data 

Table S1. Docking scores of some of the phytochemicals docked into the active site of Human Hsp90. 

Phytochemicals 

Cannabis sativa 

    Docking          

      Score 

Phytochemicals 

  Anacardium occidentale 

 Docking        

    Score 

Phytochemicals 

Tinospora cordifolia 

 Docking    

    score 

Guaiol -11 Actinidine -12.1 Choline -10.8 

Cycloartenol -10.7 3-o-methylcyanidinhexoside -10.8 Bergenin -10.5 

Stigmasterol -10.7 chlorogenic acid -10.7 Aporphine -10.4 

Cannabichromene -10.5 2,3-Dihydroxybenzoic acid -10.6 Ecdysterone -10.4 

Cannabielsoin -10.3 Palbociclib -10.6 makisterone A -10.4 

Cephradine -10.3 Quercetin-3-O-rhamnoside -10.5 beta ecdysterone -10.1 

Chrysin -10.3 Rutin -10.4 Magnoflorine -10.1 

alpha phellandrene -10.2 Corydaline -10.3 palmatoside C -10 

Luteolin -10 Berberine -10.2 Lysicamine -9.8 

Malvidin -9.8 (-)-Epigallocatechin -9.9 palmatoside B -9.8 

 

Table S2. Correlation coefficient Analysis. 
     
        pIC50 

Docking score Correlation 

Coefficient 

    

.660**  
Sig. (2-tailed) 

 
  0  

N 
 

  89  
Bootstrapb Bias   -0.008   

Std. Error   0.07   
BCa 95% 

Confidence Interval 

Lower 

0.515    
Upper 0.777 

** shows there is significant positive correlation at p <0.01   

  

 
Figure S1. Graph of Docking Scores Versus pIC50. 

Table S3. Determination of the Drug-likeness of the hit compounds. 

Plants Hit name HBA≤10 HBD≤5 MW≤500 PSA XLogp nROTb≤5 

Tinospora Choline 1 1 104.173 20.23 -0.4 2 

Cannabis Guaiol 1 1 222.372 20.23 3.1 1 

Anacadium Actinidine 1 0 147.221 12.89 2.4 0 

Standarddrug  Geldanamycin 9 3 560.644 163.48 2 5 

NOTE; 

 HBA means hydrogen bond acceptor 

  HBD means hydrogen bond donor 

  MW means molecular weight 

  PSA means polar surface area 

  nROTb means no. of rotatable bonds 

   XLogP means Octanol-water partition coefficient 
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Figure S2. Normal distribution plot of the model. 

Table S4. The pIC50 of the observed and predicted values from some of the compounds in the training set. 

 Chembl_ID Structures Observed     pIC50 Predicted 

pIC50 

Residual  

 

CHEMBL2170462 

 

6.96 6.90313 

 

0.25554 

 

 

 

CHEMBL2170447 

 

7.52 7.6007 

 

-0.2635 
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 Chembl_ID Structures Observed     pIC50 Predicted 

pIC50 

Residual  

 

CHEMBL2170490 

 

6.51       6.5980 

 

-0.1091 

 

 

 

CHEMBL2170476 

 

6.75 6.7187 

 

-0.1091 

 

 

 

CHEMBL2170481 

 

6.4 6.6629 

 

-0.58584 

 

 

 

CHEMBL2170463 
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0.43884 
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-0.3449 
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 Chembl_ID Structures Observed     pIC50 Predicted 

pIC50 

Residual  

 

CHEMBL2170470 

 

6.19 6.5000 

 

-0.1507 

 

 

 

CHEMBL2170469 

 

6.05 6.0658 

 

0.00095 

 

 

 

CHEMBL2170446 

 

6.85 6.8621 0.13780 
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 Chembl_ID Structures Observed     pIC50 Predicted 

pIC50 

Residual  

 

CHEMBL2170480 

 

 

6.0 5.7611 -0.25111 

 

 

CHEMBL2170473 

 

 

7.19 6.9963 

 

0.47253 

 

 

 

CHEMBL2170467 

 

 

7.47 7.3381 

 

0.31082 

 

 

 

CHEMBL2170461 

 

 

6.96 6.9564 

 

0.18478 
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5.3 5.2999 

 

-0.4319 
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 Chembl_ID Structures Observed     pIC50 Predicted 

pIC50 

Residual  

 

CHEMBL2170448 

 

 

6.62 6.6057 

 

-0.0656 

 

 

 

CHEMBL2170486 

 

 

7.22 7.1312 0.13989 

 

 

CHEMBL2170454 

 

 

7.52 7.1417 

 

0.24574 

 

 

 

CHEMBL2170482 

 

 

7.22 7.1417 

 

0.37761 
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0 .02614 
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 Chembl_ID Structures Observed     pIC50 Predicted 

pIC50 

Residual  

 

CHEMBL2170452 

 

 

6.22 6.3276 

 

 

 -0.4667 
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7.22 7.2867 

 

0.15924 

 

 

 

CHEMBL2170455 

 

 

6.6 6.6946 

 

 

-0.1108 

 

 

 

CHEMBL2170453 

 

 

6.82 6.7343 

 

0.16602 
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7.1 7.2177 

 

0.22341 
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 Chembl_ID Structures Observed     pIC50 Predicted 

pIC50 

Residual  

 

CHEMBL2170487 

 

 

6.72 6.6629 

 

-0.0363 

 

 

 

CHEMBL2170464 

 

 

7.22 7.0255 

 

0.55654 

 

 

 

CHEMBL2170471 

 

7.4       7.3999 

 

0.32633 

 

 

CHEMBL2170475 

 

       5.76 5.7616 

 

-0.3375 

 

 

CHEMBL2170495   

 

7.17 7.2183 0.22112 
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