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Abstract: The synthesis and development of peptides containing heterocycles, such as tetrazoles, have
gained significant attention due to their biological significance and pharmacophores. In this study, S-
linked tetrazoles derived from Fmoc/Boc/Chz-amino acids were synthesized. Seven target proteins were
selected, including actibindTRnase protein from Aspergillus niger (PDB ID: 3D3Z), anti-inflammatory
proteins like COX1, COX2, LOX5 (PDB ID: 1CQE, 1CX2, 3V99, respectively), and breast cancer-
causing protein thioredoxin kinase (PDB ID: 1H6V, 1T46, 2J5F). The 3D structures of these proteins
were obtained from the protein data bank, and the active sites were predicted for docking studies. Based
on the docking scores, five lead amino acid-linked tetrazole compounds were chosen, which had the
most hydrogen bonds. These compounds were tested for their stability using dynamic tests performed
with Discovery Studio 3.5. The lead compounds were prepared using a mixed anhydride reaction and
Hantzsch's protocol from protected amino acids. The keto thiocyanates were synthesized from the
respective bromomethyl ketones and subjected to a cycloaddition reaction with azide ion with Lewis
acid catalyst to obtain the keto S-linked tetrazoles. HRMS and NMR were used to characterize the
compounds. Finally, the synthesized compounds were evaluated for their anticancer activity on MCF7
cell lines for breast cancer.
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1. Introduction

Synthetic organic compounds are many, which are sulphanilamide, thiazolidinones,
benzothiazines, thiazoles, and tetrazoles [1], etc., which are Schiff's bases [2]. Among them,
tetrazoles are widely used in medical [3], pharmacological, and biological activities such as
antibacterial [4-6], antifungal [7,8], analgesics, anti-inflammatory [9], antihypertensive [10],
antiallergic, antibiotic [11], and anticonvulsant agents [12]. The fundamental core of tetrazoles
[13,14] contains heterocycles of nitrogen, and this demonstrates biological and
pharmacological properties [15] with structures similar to natural and synthetic compounds
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having biological activity [16-18]. Tetrazoles, other than pharmacological and biological
activities, have applications in the photographic industry, organic chemistry, agriculture [19],
coordination chemistry [20], and explosives [21]. Tetrazole compounds, also known as
tetrazolic acids, are versatile molecules that exist in neutral, cationic, or anionic forms [22].
Tetrazoles can be synthesized by various methods, such as by using sodium azide [23], nitriles
[24], and an excess of triethylamine hydrochloride. In addition, tert-butyl alcohol can be used
along with the reaction of nitriles with sodium azide/acetic acid. Among these methods,
cyclization processes using sodium azide [25] have been proven to be more effective.

Peptidomimetics is a technique where a peptide structure in 3D space is mimicked
naturally by retaining its biological activity [26]. Peptides are made up of amino acids [27]
since amino acids act as neurotransmitter transport agents[28,29] and biosynthesis, and some
act as antibiotics [30]. Peptidomimetics of amino acids enhance their biological activity [31-
33].

We are interested in mimicking tetrazoles with amino acids since they exhibit potent
pharmacological and biological activities. We designed tetrazoles with Fmoc, Boc, and Cbz
protecting groups. Target proteins such as actibindTRnase protein, COX1, COX2, LOXS5, and
Breast cancer-causing protein thioredoxin kinase. Molecular dockings were performed for the
active region of proteins and designed structures [34,35]. Stable compounds were chosen based
on the docking scores obtained, and their synthesis was performed using Hantzsch's procedure
and a mixed anhydride reaction [36]. The intermediates like diazomethyl ketone, bromomethyl
ketone, and keto thiocyanates were synthesized as per the Scheme 1 outlined below, and
cycloaddition of these keto thiocyanates with azide ion is performed with Lewis acid catalyst
to obtain the keto S-linked tetrazoles [37]. Dynamics studies have been executed for the lead
compounds with proteins of interest to evaluate their stability in the organism using Discovery
Studio 3.5 [38].

2. Materials and Methods

2.1. In silico approach.

The target protein 3-dimensional structure of Aspergillus niger, and anti-inflammatory
targets like COX1, and COX2, were selected for in silico approach, and the structure (PDB id:
3D3Z, 1CQE, 1CX2) was downloaded from the PDB website and cleaned using Discovery
Studio 3.5 (DS). A simulation box was set up for 20 nanoseconds, and the simulation was run
to minimize protein [39]. The active site present on the protein molecules was predicted by
using DS 3.5. The molecules of the ligand were sketched using ChemDraw software, where
the amine group was protected by protecting groups such as Fmoc, Boc, and Cbz. The amino
acid chain was extended along the carboxyl side and saved in a mol file format. Then, ligand
minimization was carried out to get a stable ligand molecule by using Discovery Studio [40].
The ligand molecule was checked for Lipinski's rule of 5 and ADMET properties. The designed
ligand is shown in Figure 1. Further, Ligand-Protein docking was conducted using Lead
ITFlexX molecular docking, and Molecular Dynamics studies were performed using Discovery
Studio 3.5 [41].

Figure 1. Designed ligand compound.
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2.2. Synthesis.

The N-protected amino acid was reacted with triethyl amine (TEA), ethyl chloroformate
(ECF), and NMU (N-nitroso N-methyl urea) using the mixed anhydride method to form a
diazomethyl ketone. The resulting intermediate was dissolved in THF, and to the solution, 45%
aqueous HBr was added. The reaction progress was monitored using TLC. Finally, the
bromomethyl ketone was obtained by diluting the reaction mixture with water, as shown in
Scheme 1.

R R R
TEA,ECF 0
OH : _ )\r(CHNz 45% agHBR __ | HNJ\HAB
PgHNJ\W Diazomethane PgHN THF.rt, 5min g 0 '
0] (0] 3
1 2

Pg = Protecting group
TEA = Triethyl amine
ECF = Ethyl chloroformate

Scheme 1. Synthesis of N-protected bromomethyl ketone.

Bromomethyl ketone acts as the precursor for the formation of keto thiocyanates.
Bromomethyl ketone was dissolved in tetrahydrofuran (THF), made to react with potassium
thiocyanate (KSCN) and TBAB (tetra N-butyl ammonium bromide), and kept for reflux for 2
hours. The obtained compound was observed through TLC. Ketothiocyanates obtained were
reacted with a calculated amount of sodium azide and zinc bromide in water/isopropanol (1:1)
for 16 hours of reflux, as shown in Scheme 2. A simple workup involving acidification to obtain
tetrazoles in pure form, and checked by TLC.

KSCN

R R -NH
PgHN Br —rr  PgHN SCN™IpA/,0 PgHN S
o) o) O
3 4 5

Pg = Fmoc/Boc/Chz
Scheme 2. Synthesis of N-protected ketomethylene S-linked tetrazoles.

3. Results and Discussion
3.1. Anticancer activity.

3.1.1. MTT assay.

The cell line was cultured in 25 cm? flasks and harvested using trypsin. A
hemocytometer was used to count the number of cells. Next, each well of 96-well plates was
added with 1 x 10% cells/100 pL medium and incubated for 24 hours. After that, the cell lines
were treated with varying concentrations of a sample that was dissolved in a medium, and the
incubation continued for a further 48 hours. Then, 20 uL of MTT (5 mg/mL) in phosphate-
buffered saline (PBS) was added to each well, and the plate was incubated at 37°C for 4 hours.
The medium was then removed, and each well was filled with 100 pL of dimethyl sulfoxide.
The plate was incubated again for 10 minutes at 37°C, and finally, the plate was read at 570
nm using a microplate reader. The percentage of cell viability was calculated using the formula:

([AB - AAJ/AB) x 100 (1)
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AB represents the absorption of the blank sample, whereas the absorption of the test
sample is represented by AA.

3.1.2. In silico results.

Ligand preparation: In this study, we drew the structures using ChemDraw software to
protect the amine end and extend the carboxyl end using S-linked ketomethylene tetrazoles.
Around 80 structures were drawn for the study, 60 structures were protected (Fmoc, Boc, and
Cbz, respectively), and 20 structures, 60 of which were protected (Fmoc, Boc, and Chz,
respectively) and 20 of which were without protection. These 80 structures were minimized
and screened using Discovery Studio v3.5. The 78 screened compounds were again screened
by the Lipinski rule of 5 and ADMET property using Discovery Studio v 3.5. The screened
ligands were saved as library files in PDB format for docking studies. Lipinski rule and
ADMET properties were assessed for five selected compounds, with the results summarized in
Tables 1 and 2. The structures of the screened compounds are illustrated in Figure 2.

Table 1. Lipinski rule of 5 of compounds®.

Compound H- Donors H- Acceptors A logP Molecular weight
Cbz-Ser-y[CO-CH,-S-Tet] (5a) 5 9 0.313 337.35
Cbz-Arg-y[CO-CH2-S-Tet] (5b) 5 9 3.39 407.47
Fmoc-Ala-y[CO-CH2-S-Tet] (5¢) 5 9 -0.339 409.46
Cbz-Trp-y[CO-CH2-S-Tet] (5d) 5 9 3.808 402.47
Fmoc-Arg-y[CO-CH2-S-Tet] (5€) 5 10 -0.003 495.57

#This table signifies the H- Donors, H- Acceptors, and the lipophilicity of the compound represented as log P
and molecular weight.

HNYNHZ
R N—N‘H R N’N‘H HN
I N I N HO _NH -NH
FmocHN/'}(\S/LN BocHN/H(\S/LN jﬁh )NLN.,N j\J\'h J\L‘NNH c HNE}HTAS/NM N
CbzHN S b mocl
0 o] 3 ChzHN T S7°N )
5a 5b 5¢c
R N-NH R N-NH HNYNHZ
I N I N HN
CszN/H(\S/LN HZN/H(\S/LN "
0 o 7 N-NH N-NH
AN N
R= Amino acid side chain ChzHN i S” N FmocHN i S™N
5d 5e
Figure 2. Structures of the screened compounds
Table 2. ADMET properties of 5 compounds.
Compound Solubilit Blood-brain Extension Extension Extension
P y level barrier level CYP2D6 hepatotoxic PPB
Cbz-Ser-y[CO-CH,-S-Tet] (5a) 3 4 -3.50 -6.07 -7.855
Cbz-Arg-w[CO-CH2-S-Tet] (5b) 3 4 -4.2 -6.9 -7.89
Fmoc-Ala-y[CO-CH2-S-Tet] (5¢c) -2.54 4 -6.3589 0.2945 -9.06
Cbz-Trp-y[CO-CH,-S-Tet] (5d) 1 4 -2.60 0.6413 -13.054
Fmoc-Arg-y[CO-CH2-S-Tet] (5e) 3 4 -4.54 0.366 -15.99

It is crucial to check the ADMET properties of any drug candidate to ensure its safety.

These properties include metabolism, adsorption, excretion, distribution, and toxicity. For a
drug to be considered safe, it should have low levels of these properties. The table provided
above represents the drug's solubility, BBB (Blood-Brain Barrier) penetration, CYP2D6
(Cytochrome P450 2D6) inhibition, HEPATOX (Hepatotoxicity), and PPB (Plasma Protein
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Binding). A solubility score of 0-2 indicates high solubility. BBB penetration score of 1
indicates high penetration, 2 indicates medium penetration, and 3 indicates low penetration. A
CYP2D6 score of -ve indicates non-inhibitors, while a positive score indicates inhibition. For
HEPATOX, a score of less than 1 indicates nontoxicity. The PPB score indicates the drug's
binding capacity; the higher the value, the greater the binding capacity.

3.2. Protein preparation.

Target proteins: ACTIBIND protein (3D3Z) produced in Aspergillus niger belongs to
the T2 RNase family and has functions such as digestion of extracellular poly ribonucleotide,
which in turn accelerates phosphate uptake and also interferes in intracellular actin network
structure [42]. Inflammatory proteins are COX1 (1CQE), COX2 (1CX2) and LOXS5 (3V99).
COX1 and COX2 are involved in the biosynthesis of arachidonic acid to PGGg, which causes
inflammation in organisms [43,44]. An arachidonic acid mediator, leukotriene, in the presence
of LOX5, LOX15, and leukotriene Ag, is produced, which promotes inflammation in organisms
[45]. Breast cancer proteins are thioredoxin (LH6V), c-Kit tyrosine kinase (1T46), and a closely
related tyrosine kinase protein, EGFR (2J5F). 3D sketches of target proteins were obtained
from the PDB website. Proteins were minimized, and the active location was recognized by
reference ligand using Discovery Studio v 3.5.

Docking: Protein-ligand docking was carried out in Lead IT using the FlexX algorithm.
FlexX can predict protein-ligand complex geometry accurately and quickly for known protein
3D structures and small ligands. The active region of proteins was allowed to interact with the
screened ligands. From the docking scores, we can analyze that the more negative the value,
the more interaction there is with the protein.

Synthesis: The next process after docking was to synthesize the compounds based on
the docking score. Synthesis of tetrazoles was done via mixed anhydride reaction, bromination,
thiocyanate reaction, and finally, synthesis of S-linked keto tetrazoles.

A mixed anhydride reaction forms diazomethyl ketone, which further reacts with HBr
to form bromomethyl ketone. Bromomethyl ketone forms a keto thiocyanate compound when
reacted with KSCN and TBAB. Cycloaddition of these keto thiocyanates with azide ion in the
presence of a Lewis acid catalyst will be carried out to obtain the N-protected keto methylene
S-linked tetrazoles and partially verified by TLC. Synthesized compounds were evaluated by
HRMS for mass and 3C and *H NMR for structure identification. These results show that the
synthesized compounds and the designed compounds' molecular weights are exactly the same,
and these results indicate that the synthesized compounds do not have any contamination.

3.2.1. Molecular docking and dynamics.

The target protein 3D structure of Aspergillus niger and anti-inflammatory targets like
COX1 and COX2 were selected for in silico approach, and the structure (PDB id: 3D3Z, 1CQE,
1CX2) was downloaded from the PDB website (www.rcsb.org/pdb) and cleaned using
Discovery Studio 3.5 (DS). The active region residues are tabulated in Table 3.

Table 3. Active site residues of selected target proteins.
Protein name Active site residues
Antifungal PHE35, HIS51, ASP97, TYR98, PHE107, HIS110
VAL116, ARG120, ILE245, VAL349, GLN350, LEU352, SER353, TYR355,
LEU359, TRP387, PHE518, MET522, ILE523, GLU524, GLY526, ALA527,
PRO528, SER530, LEU531, LEU534.

Anti-inflammation
(COX1)
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Protein name |

Active site residues

Anti-inflammation

(COX2)

ARG120, GLN192, VAL349, LEU352, SER353, GLY354, TYR355, TRP387,

ARG513, PHE518, VALS523, GLU524, ALA527

Protein-ligand docking was performed using the FlexX algorithm in Lead IT software.
The algorithm accurately predicts the geometry of the protein-ligand complex within a few
seconds for a protein with a known 3D structure and a small ligand molecule. The docking

score has been tabulated in Table 4.

Table 4. Docking score and interaction residues for selected proteins.

Targgt Ligand name Docking score Interacting residues
Protein
3D3Z Fmoc-Ala-y[-CO-CH2-S-Tet] (5¢) -13.1587 PHE35, HIS51, ASP97, TYR98
STD (fluconazole) -8.2817 PHE35, HIS51, ASP97, TYR98
VAL116, ARG120, ILE245, VAL349,
COX1 | Cbz-Trp-y[-CO-CH-S-Tet] (5d) "17.4948 | G| N350, LEU352, SER353, TYR355, LEU359
COoX2 Fmoc-Arg-y[-CO-CH,-S-Tet] (5e) -11.9524 ARG120, GLN192, VAL349, LEU352
STD (Ibuprofen) -10.3762 ARG120, GLN192, VAL349, LEU352

3.3. Antifungal studies.

In this present work, the strain used for the Kirby-Bauer well diffusion method was
Aspergillus niger (MTCC 2425). The choice of test microorganisms depends on the main
purpose of the study. From the above table, it's clear that the synthesized sample, i.e., Fmoc-
Ala-y[-CO-CH2-S-Tet] (5c), shows better activity when compared to fluconazole. The
majority of tetrazoles are susceptible and show their activity when tested at 500 pg/mL [46].
The reason for the susceptible nature of the compounds is due to the interactions with the
proteins selected, and also due to the kind of penetration of the compounds into the bacterial

cell.

Table 5. The inhibition zones of Fmoc-Ala-y[CO-CH,-S-Tet] against Aspergillus niger (MTCC2425).

3.4. Anti-inflammatory studies.

Sl no sample Volume and Inhibitory zone
' concentration (mg/mL) (mm)
1 Std 100 (7 mg/mL) 7.0
2 50 (10 mg/mL) 0.0
3 100 (10 mg/mL) 1.0
4 Fmoc-Ala-y[CO-CH2-S-Tet] 150(10 mg/mL) 2.0
5 (5¢) 200 (10 mg/mL) 25
6 250 (10 mg/mL) 3.0
7 300 (10 mg/mL) 4.0

The study aimed to test the anti-inflammatory activity of purified peptides. The method
employed was a tail immersion test in Swiss Albino mice of 30 mg. The water bath was
maintained at a constant temperature of 55°C. The drug was given half an hour before the
immersion of the tail in water.

10

8

TAIL IMMERSION
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] =
& =
=
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R R

<& <&
S o

Control
Tl
B Std

Figure 3. Anti-inflammatory studies for peptide.
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The time taken for the first flick by mice when their tail was immersed in water is shown
in Figure 3. From the above figure, we can say that if the compound is injected into the body
of mice, the time of flicking the tail increases, which shows the compound's activity in reducing
pain for a certain period of time. The compound has exhibited a centrally acting analgesic effect
through a tail immersion test, which raises the pain threshold of animals towards heat. This
elevates the pain threshold of animals towards heat. Hence, we can say our compound is
showing analgesic activity.

3.5. Writhing test.

Pure peptides were investigated for their anti-inflammatory activity. The method
employed was a writing test in Swiss Albino mice of 30 mg. Acetic acid induces irritation in
the abdominal region, which makes mice stretch their abdomen to release the stress in them.
Usually, writhing starts within 5 minutes when only acetic acid is given, but when the drug is
injected into the mice, it can withstand the pain in their abdominal part, which signifies the
action of the drug by increasing the initiation time period of writhing shown in Figure 4.

60

N
i

N
b

Number of writhing

G3
Figure 4. Writhing test for peptide.

Based on the values we observed, the number of writhing in group 2 was reduced by
50% compared to group 1, which was treated with only acetic acid. Our compound is showing
the nearest value of ICsg to the STD Indomethacin. From this, we can say our compound has
analgesic activity and reduces inflammation.

4. Conclusions

In conclusion, we have synthesized 5 lead S-linked tetrazoles derived from
Fmoc/Boc/Cbz-amino acids based on the docking scores. Seven target proteins,
actibindTRnase protein (3D3Z) from Aspergillus niger, anti-inflammatory proteins (1CQE,
1CX2, 3V99), and breast cancer-causing protein thioredoxin kinase (1H6V, 1T46, 2J5F) were
identified, and active sites were predicted. The lead compounds were synthesized by a mixed
anhydride reaction and Hantzsch's protocol from N-protected amino acids. The keto
thiocyanates were synthesized from the respective bromomethyl ketones and subjected to a
cycloaddition reaction with azide in the presence of ZnBr»to obtain the keto S-linked tetrazoles.
The synthesized compounds were characterized by 'H NMR, 3C NMR, and HRMS analysis.
Finally, the synthesized compounds were evaluated for their anticancer activity on MCF7 cell
lines for breast cancer.
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