Volume 14, Issue 3, 2025, 108

https://doi.org/10.33263/LIANBS143.108

The Theoretical Description for the CoO(OH)-Assisted Electrochemical Determination of Tobacco Nitrosocompounds

Volodymyr V. Tkach ^{1,*} , Marta V. Kushnir ¹, Natalia S. Andrusyak ¹, Sílvio C. de Oliveira ², Yana G. Ivanushko ³, Oleksandra V. Ahafonova ³, Petro I. Yagodynets ^{1,*}, Lyudmyla V. Romaniv ¹, Adriano O. da Silva ⁴, Nataliia P. Derevianko ⁵, Oksana V. Kobets ⁵, Mykhailo P`. Zavhorodnii ⁵, Vira M. Odyntsova ⁶, Mykola P. Krasko ⁶, Elshan Yu. Akhmedov ⁷, Valerii P. Moroz ⁷, Laziz N. Niyazov ⁸, Tetiana V. Morozova ⁹, Jarem R. Garcia ¹⁰, José Inácio Ferrão da Paiva Martins ¹¹, Zholt O. Kormosh ¹², Alla V. Grekova ¹³, Ianina F. Burdina ¹³, Inesa M. Khmeliar ¹⁴, Lesya O. Kushnir ¹⁴

- ¹ Chernivtsi National University, 58001, Kotsyubynsky Str. 2, Chernivtsi, Ukraine
- Institute of Chemistry. Federal University of Mato Grosso do Sul, 79074 460, Av. Sen. Felinto Müller, 1555, Vila Ipiranga, Campo Grande, MS, Brazil
- ³ Bukovinian State Medical University, 58001, Teatralna Sq. 9, Chernivtsi, Ukraine
- Federal University of the West of Pará, Juruti Campus, 68170 000, Rua Veríssimo de Souza Andrade, s/n, Juruti, PA, Brazil
- Khortytska Natsionalna Navchalno-Reabilitatsiyna Akademiya, 69000, Naukove Mistechko, 59, Khortytsia Island, Zaporizhzhia, Ukraine
- Zaporizhzhia State Medical University, 69600, Mayakovsky Ave. 24, Zaporizhzhia, Ukraine
- National University of Pharmacy, 61002, Pushkinska Str. 53, Kharkiv, Ukraine
- ⁸ Abu Ali Ibn Sino Bukhara State Medical Institute, 705018, Navoi Str., 1, Bukhara, Uzbekistan
- 9 National Transport University, 01001, Omelianovych-Pavlenko Str. 1, Kyiv, Ukraine
- State University of Ponta Grossa, Uvaranas Campus, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil
- 11 Engineering Faculty of the University of Porto, 4200-465, Rua Dr. Roberto Frias, s/n, Porto, Portugal
- ¹² Volyn National University, 43000, Voli Ave., 13, Lutsk, Ukraine
- Odesa National Medical University, 65000, Valikhovsky Ln. 2, Odesa, Ukraine
- Rivne State Basic Medical Academy, 33000, Mykola Karnaukhov Str., 53, Rivne, Ukraine
- * Correspondence: nightwatcher2401@gmail.com (V.V.T.); ved1988mid@rambler.ru (P. I.Y.);

Received: 14.03.2023; Accepted: 28.05.2023; Published: 8.07.2025

Abstract: The possibility for the tobacco nitrosocompounds electrochemical determination on cobalt (III) oxyhydroxide is evaluated theoretically. If the redox pair CoO(OH)/CoO₂ is used, two possibilities of the electrochemical reaction involve the nitroso group oxidation or N-oxidation. As for N-nitrosoanabatine, another oxidation reaction involving the isolated double bond is possible. All of the reactions are efficient from an electroanalytical point of view, providing efficient analytical signal interpretation. The sensor may be used to measure either global nitrosyl compounds concentration or the concentration of the specific organic nitrosyls from tobacco, like N-nitrosonornicotine, N-nitrosoanabasine, and N-nitrosoanabatine. As for the oscillatory behavior, its probability becomes low in neutral media and augments in an alkaline medium and even more in an acidic medium, due to the interaction of ionic forms with a double electric layer.

Keywords: tobacco-specific nitrosamines; N-nitrosocompounds; conducting polymers; cobalt (III) oxyhydroxide; electrochemical sensors; electrochemical oscillations; stable steady-state.

© 2025 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The authors retain copyright of

their work, and no permission is required from the authors or the publisher to reuse or distribute this article, as long as proper attribution is given to the original source.

1. Introduction

Organic nitrosocompounds [1–4] are among the most toxic mutagens and teratogens in the world. They may have a natural, semisynthetic, or synthetic origin. Either C- or especially N-nitrosyls are considered aggressive pollutants for the environment.

Generally, the nitroso- and nitrosamino compounds are obtained in organisms by nitrate and nitrite metabolism in acidic media, yielding a strong electrophile, the nitrosyl cation:

$$NO_3^- + 4H^+ + 2e^- \rightarrow NO^+ + 2H_2O$$
 (1)

$$NO_2^- + 2H^+ \rightarrow NO^+ + H_2O$$
 (2)

Which thereby participates in the electrophilic reactions in the organism, yielding toxic derivatives. The same process also occurs in plants, including tobacco, where the alkaloid secondary amine reacts with the nitrosyl cation, yielding the specific tobacco nitrosamines, the most characteristic of which are described in Figure 1.

Figure 1. N-nitrosonornicotine, N-nitrosoanabasine, and N-nitrosoanabatine.

All of them appear either in natural conditions or during the tobacco curing and processing [5–9]. They are highly toxic not only for those who actively smoke but also for those who smoke passively, which is why their determination is highly relevant [10–14], and the electrochemical sensing may be an interesting response to this question.

Being an intermediary compound in the nitrogroup electrochemical reduction to an aminogroup, the nitrosyl moiety is electrochemically active [15–18], thereby being capable of participating in either anodic or cathodic processes. Moreover, the pyridinic ring is also electrochemically active, as it possesses a nitrogen atom and aromatic fragments [19–21].

Therefore, as a semiconducting electroactive material, the cobalt(III) oxyhydroxide may be used as an electrode modifier for tobacco nitrosamines electrochemical determination [22–26]. Moreover, both CoO/CoO(OH) and CoO(OH)/CoO₂ redox pairs may be used. Nevertheless, the electrochemical sensitivity depends highly on tobacco nitrosamines or their oxidation products ionization in a double electric layer (DEL), which may highly impact the analytical signal interpretation and the electroanalytical process stability [27–32]. This impact may only be detailed by an *a priori* theoretical investigation involving the mechanism suggestion and the development and analysis of the corresponding mathematical model [33–35].

So, the goal of our work is to evaluate, from the theoretical point of view, the behavior of the system with specific tobacco nitrosamines determination, assisted by CoO(OH)-modified electrode by use of CoO(OH)/CoO₂ redox pair. The corresponding reaction mechanism is suggested, and the corresponding mathematical model is developed

and analyzed from a stability point of view in order to infer the condition of the most efficient sensing and the realization of the instabilities. Also, the behavior of this system will be compared to that of similar ones [33–35].

2. Materials and Methods

In the case of the use of the CoO(OH)/CoO₂ redox pair, cobalt (III) oxyhydroxide is oxidized, yielding cobalt dioxide as (3):

$$CoO(OH) + OH^{-} - e^{-} \rightarrow CoO_2 + H_2O$$
 (3)

Being a strong oxidant, cobalt (IV) oxide will thereby oxidize TSNA by either the nitroso group or the pyridinic nitrogen atom. Yet for the anabatine molecule, the third oxidation scenario involves the isolated double bond of the tetrahydropyridine moiety. All of the oxidation scenarios are joined in Figure 2.

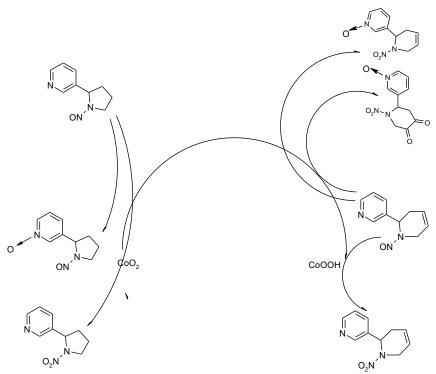


Figure 2. The scheme of the electroanalytic process of N-nitrosonornicotine and N-nitrosonanabatine.

Taking into account the behavior of both analytes and accepting some assumptions [33–35], we describe the behavior of this system by a trivariate equation set (4):

$$\begin{cases} \frac{dn}{dt} = \frac{2}{\delta} \left(\frac{\Delta}{\delta} (n_0 - n) - r_{11} - r_{12} \right) \\ \frac{da}{dt} = \frac{2}{\delta} \left(\frac{A}{\delta} (a_0 - a) - r_{21} - r_{22} - r_w \right) \\ \frac{dc}{dt} = \frac{1}{c} (r_{11} + r_{12} + r_{21} + r_{22} + r_w - r_3) \end{cases}$$
(4)

In which n and a are nitrosonornicotine and nitrosonabatine concentrations in the pre-surface layer, n_0 , and a_0 are the correspondent analytes bulk concentrations, Δ and A are the correspondent diffusion coefficient, c is the cobalt (III) oxyhydroxide surface coverage degree, C is its maximal surface concentration, and the parameters r are the correspondent reaction rates, calculated as:

$$r_{11} = k_{11}n(1-c)^2 (5)$$

$$r_{12} = k_{11}n(1-c)^2 \exp(-\lambda n)$$
 (6)

$$r_{21} = k_{21}a(1-c)^2 (7)$$

$$r_{22} = k_{21}a(1-c)^{2} \exp(-\mu a)$$

$$r_{w} = k_{w}a(1-c)^{2}$$

$$r_{3} = k_{3}c \exp\left(\frac{F\varphi_{0}}{PT}\right)$$
(8)
(9)
(10)

In which the parameters k are the corresponding reaction rate constants, λ and μ stand for the parameters relating the DEL ionic force and related electrophysical properties with the N-acynitroform formation during the oxidation, F is the Faraday number, φ_0 stands for zero-charge-related potential slope, R is the universal gas constant, and T is the absolute temperature.

In basic media, for which this model is valid, the oscillatory behavior is more probable than for the neutral media, due to the formation of pseudoacid ion as oxidation product (see the similar systems for perilartine electrochemical determination [33–35]), but less probable than for acidic media, due to the total ionization of the pyridinic ring in both of the compounds. Either way, the CoO(OH)-assisted electrooxidation may be proven efficient, as shown below.

3. Results and Discussion

We investigate the behavior of the system of TSNA electrooxidation in the CoO(OH)/CoO₂-modified anode by analyzing the equation set (4) by means of linear stability theory and expose the Jacobian steady-state members as (11):

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 (11)

In which:

$$a_{11} = \frac{2}{\delta} \left(-\frac{A}{\delta} - k_{11} (1 - c)^2 - k_{11} (1 - c)^2 \exp(-\lambda n) + \lambda k_{11} (1 - c)^2 \exp(-\lambda n) \right)$$
(12)
$$a_{12} = 0$$
(13)
$$a_{13} = \frac{2}{\delta} (2k_{11}n(1 - c) + 2k_{11}n(1 - c) \exp(-\lambda n))$$
(14)
$$a_{21} = 0$$
(15)
$$a_{22} = \frac{2}{\delta} \left(-\frac{A}{\delta} - k_{21} (1 - c)^2 - k_{21} \exp(-\mu a) + \mu k_{21} \exp(-\mu a) - k_w (1 - c)^2 \right)$$
(16)
$$a_{23} = \frac{2}{\delta} (2k_{21}a(1 - c) + 2k_{21}a(1 - c) \exp(-\mu a) + 2k_w a(1 - c))$$
(17)
$$a_{31} = \frac{1}{c} (k_{11}(1 - c)^2 + k_{11}(1 - c)^2 \exp(-\lambda n) - \lambda k_{11}(1 - c)^2 \exp(-\lambda n))$$
(18)
$$a_{32} = \frac{1}{c} (k_{21}(1 - c)^2 + k_{21} \exp(-\mu a) - \mu k_{21} \exp(-\mu a) + k_w (1 - c)^2)$$
(19)
$$a_{33} = \frac{1}{c} \left(-2k_{11}n(1 - c) - 2k_{11}n(1 - c) \exp(-\lambda n) - 2k_{21}a(1 - c) - 2k_{21}a(1 - c) \exp(-\mu a) - 2k_w a(1 - c) - k_3 \exp\left(\frac{F\varphi_0}{RT}\right) + jk_3c \exp\left(\frac{F\varphi_0}{RT}\right) \right)$$
(20)

Taking into account the main diagonal elements (12), (16), and (20), important for the positive callback, described by the positive addendums in these elements, we may see that it contains three elements, capable of being positive. Those elements are $\lambda k_{11}(1-c)^2 \exp(-\lambda n) > 0$, if $\lambda > 0$, $\mu k_{21} \exp(-\mu a) > 0$, if $\mu > 0$, describing the positive callback during the DEL influences of the chemical stages and $jk_3c \exp\left(\frac{F\varphi_0}{RT}\right) > 0$ if j>0, describing the positive callback during the DEL influences of the electrochemical stage. This callback is manifested in the oscillatory behavior.

The oscillation amplitude and frequency will depend on the background electrolyte composition, as in [29–32]. Moreover, the oscillatory behavior probability will be directly

dependent on pH. In neutral pH, in which the nitrosyl oxidation product becomes more ionized, the parameters λ and μ are set equal to zero; thus, the expressions $\mu k_{21} \exp(-\mu a) = \lambda k_{11} (1-c)^2 \exp(-\lambda n) = 0$, and the exponential expressions $\exp(-\mu a) = \exp(-\lambda n) = 1$, excluding two of three potentially positive elements, leaving only one, related to the electrochemical stage, such as in [33–35].

We simplify the *steady-state stability analysis*, reexposing the Jacobian determinant as (21):

$$\begin{vmatrix}
-\kappa - \Xi & 0 & P \\
0 & -\alpha - \Lambda & T \\
\Xi & \Lambda & -P - T - \Omega
\end{vmatrix}$$
(21)

Opening the brackets and applying the Det J<0 conditions, inferred from the criterion, we can prove the presence of an efficient diffusion-controlled electroanalytical system, in which the steady-state stability is easy to obtain and maintain, and the steady-state stability requisite (22):

$$\kappa(\alpha P + \alpha T + \alpha \Omega + \Lambda P + \Lambda \Omega) + \Xi(\alpha T + \alpha \Omega + \Lambda \Omega) > 0$$
 (22)

The requisite (22) is satisfied in a vast topological parameter region, being thereby correspondent to the linear dependence between the electrochemical parameter and the TSNA concentrations, as neither analytes nor the modifier undergoes the side reactions, capable of affecting their stability unless foreseen by the electroanalytical process. The requisite (22) is more likely to be satisfied in neutral than in the alkaline and even more than in an acidic medium.

As for the *detection limit*, described by the monotonic instability, it delimits the margin between the stable steady-states and unstable states. Its realization condition will be thereby given as (23):

$$\kappa(\alpha P + \alpha T + \alpha \Omega + \Lambda P + \Lambda \Omega) + \Xi(\alpha T + \alpha \Omega + \Lambda \Omega) = 0 \tag{23}$$

In the *acidic media*, the equation set (4) will remain intact, but the rate expressions will be rewritten as:

$$r_{11} = k_{11}n(1-c)^2 \exp(-\lambda n)$$
 (24)

$$r_{12} = k_{11}n(1-c)^2 \exp(-\lambda n)$$
 (25)

$$r_{21} = k_{21}a(1-c)^2 \exp(-\mu a)$$
 (26)

$$r_{22} = k_{21}a(1-c)^2 \exp(-\mu a) \tag{27}$$

$$r_w = k_w a (1 - c)^2 \exp(-\mu a)$$
 (28)

The system will thereby become similar to that described in [35] and even less stable than in the alkaline or neutral medium. Therefore, the neutral or neutralized (in the case of the acidic or basic electrode modifier component, if composite material is used) medium is the most suitable for CoO(OH)-assisted TSNA electrochemical determination; the neutral medium is preferred.

4. Conclusions

From the analysis of the system with CoO(OH)-assisted TSNA electrochemical determination, it is possible to conclude that this process is a highly efficient diffusion-controlled process in which the linear dependence between the electrochemical parameter and concentration is easily obtained and maintained. The easy interpretation of the analytical signal is given mostly in a neutral medium, in which neither the analytes nor their oxidation products are not ionized and, thereby, their ionic forms do not influence the DEL ionic force and related electrophysical properties, making it less probable the oscillatory behavior.

Author Contributions

All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data supporting the findings of this study are available upon reasonable request from the corresponding author.

Funding

This research received no external funding.

Acknowledgments

Volodymyr V. Tkach acknowledges the Engineering Faculty of the University of Porto and the University of Trás-os-Montes and Alto Douro for their support during these difficult times for Ukraine and its research.

Conflicts of Interest

The authors declare no conflict of interest.

References

- 1. Li, Y.; Hecht, S.S. Metabolism and DNA Adduct Formation of Tobacco-Specific-N-Nitrosamines. *Int. J. Mol. Sci.* **2022**, *23*, 5109, https://doi.org/10.3390/ijms23095109.
- Doukas, S.G.; Vageli, D.P.; Doukas, P.G.; Nikitovic, D.; Tsatsakis, A.; Judson, B.L. The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence. Curr. Oncol. 2022, 29, 5531-5549, https://doi.org/10.3390/curroncol29080437.
- 3. Asensio, J.; Beltrán, M.I.; Juárez-Serrano, N.; Berenguer, D.; Marcilla, A. Study of the Decomposition of N-Nitrosonornicotine (NNN) under Inert and Oxidative Atmospheres: Effect of the Addition of SBA-15 and MCM-41. *Appl. Sci.* **2022**, *12*, 9426, https://doi.org/10.3390/app12199426.
- 4. Ishizaki, A.; Kataoka, H. Online In-Tube Solid-Phase Microextraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Tobacco-Specific Nitrosamines in Hair Samples. *Molecules* **2021**, *26*, 2056, https://doi.org/10.3390/molecules26072056.
- 5. Tuesuwan, B.; Vongsutilers, V. Current Threat of Nitrosamines in Pharmaceuticals and Scientific Strategies for Risk Mitigation. *J. Pharm. Sci.* **2023**, *23*, 3549, https://doi.org/10.1016/j.xphs.2023.01.028.
- Cai, H.; Shen, C.; Xu, H. Seasonal Variability, Predictive Modeling and Health Risks of N-Nitrosamines in Drinking Water of Shanghai. Sci. Total Env. 2023, 857, 159530, https://doi.org/10.1016/j.scitotenv.2022.159530.
- 7. Feng, H.; Luo, S.-X.L.; Croy, R.G.; Essigmann, J.M.; Swager, T.M. Interaction of *N*-Nitrosamines with Binuclear Copper Complexes for Luminescent Detection. *Dalton Trans.* **2023**, *52*, 3219–3233, https://doi.org/10.1039/D2DT03848J.

- 8. Wang, S.; Sun, F.; Wang, S.; Lv, X.; Zhao, J.; Wang, J.; Yu, W.; Yu, H. N-nitrosamines in Qingdao dried aquatic products and dietary risk assessment. *Food Addit. Contam. B* **2023**, *16*, 120-129, https://doi.org/10.1080/19393210.2023.2177355.
- 9. Mallock, N.; Schulz, T.; Malke, S.; Dreiack, N.; Laux, P.; Luch, A. Levels of nicotine and tobacco-specific nitrosamines in oral nicotine pouches. *Tob. Control.* **2022**, *0*, 1-7.
- Tang, X.; Benowitz, N.; Gundel, L.; Hang, B.; Havel, C.M.; Hoh, E.; Jacob Iii, P.; Mao, J.-H.; Martins-Green, M.; Matt, G.E.; Quintana, P.J.E.; Russell, M.L.; Sarker, A.; Schick, S.F.; Snijders, A.M.; Destaillats, H. Thirdhand Exposures to Tobacco-Specific Nitrosamines through Inhalation, Dust Ingestion, Dermal Uptake and Epidermal Chemistry. *Environ. Sci. Technol.* 2022, 56, 12506–12516, https://doi.org/10.1021/acs.est.2c02559.
- 11. Li, Y.; Hecht, S.S. Carcinogenic Components of Tobacco and Tobacco Smoke: a 2022 Update. *Food Chem. Toxicol.* **2022**, *165*, 113179, https://doi.org/10.1016/j.fct.2022.113179.
- 12. Zhang, H.; Yang, J.; Chen. G.; Yang, C.; Guo, M. Functional components in *Portulaca oleracea* explored to scavenge nitrite and block nitrosamines in tobacco using affinity ultrafiltration with nitrate reductase. *Ind. Crops. Prod.* **2022**, *189*, 115872, https://doi.org/10.1016/j.indcrop.2022.115872.
- 13. Mahabee-Gittens, E.M.; Matt, G.E.; Merianos, A.L. High Levels of the Carcinogenic Tobacco-Specific Nitrosamine NNAL and Associated Findings in Children of Smokers: A Case Series. *Biomarker Insights* **2022**, *17*, 11772719221118868, https://doi.org/10.1177/11772719221118868.
- 14. Sarker, A.H.; Hang, B. Tobacco-Specific Nitrosamine 1-(N-methyl-N-nitrosamino)-1-(3-piridinyl)-4-butanal Causes DNA Damage and Impaired Replication/Transcription in Human Lung Cells. *PloS One* **2022**, *17*, e0267839, https://doi.org/10.1371/journal.pone.0267839.
- 15. Vural, K.; Karakaya, S.; Dilgin, D.G.; Gökçel, H.İ.; Dilgin, Y. Voltammetric determination of molnupiravir used in treatment of the COVID-19 at magnetite nanoparticle modified carbon paste electrode. *Microchem. J.* **2023**, *184*, 108195, https://doi.org/10.1016/j.microc.2022.108195.
- 16. Erk, N.; Bouali, W.; Mehmandoust, M.; Soylak, M. An Electrochemical Sensor for Molnupiravir Based on a Metal-Organic Framework Composited with Poly(3,4-Etylenedioxythiophene): Poly(Styrene Sulfonate). *ChemistrySelect* **2022**, 7, e202203325, https://doi.org/10.1002/slct.202203325.
- 17. Majumdar, S.; Thakur, D.; Chowdhury, D. DNA Carbon-Nanodots Based Electrochemical Biosensor for Detection of Mutagenic Nitrosamines. *ACS Appl. Bio Mater.* **2020**, *3*, 1796–1803, https://doi.org/10.1021/acsabm.0c00073.
- 18. Mentana, A.; Palermo, C.; Iammarino, M.; Chiaravalle, A.E.; Centonze, D. Electrochemical characterization of nitrosamines in different mobile phases as supporting electrolytes. *Microchem. J.* **2021**, *171*, 106885, https://doi.org/10.1016/j.microc.2021.106885.
- 19. Isik, H.; Ozturk, G.; Agin, F.; Kul, D. Electroanalytical Analysis of Guaifenesin on Poly(Acridine Orange) Modified Glassy Carbon Electrode and its Determination in Pharmaceuticals and Serum Samples. *Combin. Chem. High Thr. Screen.* **2021**, *24*, 376 385, https://doi.org/10.2174/1386207323666200709170450.
- Saritha, D.; Gupta, V.K.; Reddy, A.V.B.; Agarwal, S.; Moniruzzaman, M.; Anitha, K.; Madhavi, G. Development of a Simple, Selective, Stable and Ultrasensitive Poly(safranine/nano NiO) Modified Carbon Paste Electrode for Selective Detection of Rutin in Buckwheat and Green Tea Samples. *Int. J. Electrochem. Sci.* 2019, 14, 10093–10110, https://doi.org/10.20964/2019.11.48.
- 21. Yalcinkaya, S.; Çakmak, D. Electrochemical Synthesis of Poly(pyrrole-co[Cu(salabza)]: Its Electrocatalytic Activity Towards the Oxidation of Catechol. *Hacettepe J. Biol. Chem.* **2016**, *44*, 425-434.
- 22. Ma, D.; Ge, J.; Wang, A.; Li, J.; Yang, H.; Zhai, W.; Cai, R. Ultrasensitive determination of α-glucosidase activity using CoOOH nanozymes and its application to inhibitor screening. *J. Mater. Chem. B* **2023**, *11*, 2727-2732, https://doi.org/10.1039/D2TB02580A.
- 23. Pang, X.; Bai, H.; Huang, Y.; Zhao, H.; Zheng, G.; Fan, W. Mechanic insights for dual-speciwes evolution toward 5-hydroxymethylfurfural oxidation. *J. Catal.* **2023**, *417*, 22–34, https://doi.org/10.1016/j.jcat.2022.11.029.
- 24. Ahmed, A.T.A.; Han, J.; Shin, G.; Park, S.; Yeon, S.; Park, Y.; Kim, H.; Im, H. Sulfur-Rich N-Doped Co₉S₈ Catalyst for Highly Efficient and Durable Overall Water Electrolysis Application. *Int. J. Energ. Res.* **2023**, 2023, 4176447, https://doi.org/10.1155/2023/4176447.
- 25. Wang, H.; Zhou, Y.; Tao, Sh. CoP-CoOOH Heterojunction with Modulating Interfacial Electronic Structure: a Robust Biomass-Upgrading Electrocatalyst. *Appl. Cat. B. Env.* **2022**, *315*, 121588, https://doi.org/10.1016/j.apcatb.2022.121588.

- 26. Nakavbayashi, M.; Takata, Ts.; Shibata, N.; Domen, K. Nanostructural Analysis of SrTiO₃:Al Photocatalyst Dispersed with Pt/Cr₂O₃/CoOOH Cocatalysts by Electron Microscopy. *Chem. Lett.* **2022**, *51*, 978–981, https://doi.org/10.1246/cl.220329.
- 27. Xiong, M.; Chai, B.; Fan, G.; Zhang, X.; Wang, C.; Song, G. Immobilization CoOOH nanosheets on biochar for peroxymonosulfate activation: built-in electric field mediated radical and non-radical pathways. *J. Coll. Interface Sci.* **2023**, *638*, 412–426, https://doi.org/10.1016/j.jcis.2023.02.002.
- 28. Das, I.; Goel, N.; Agrawal, N.R.; Gupta, S.K. Growth patterns of dendrimers and electric potential oscillations during electropolymerization of pyrrole using mono-and mixed surfactants. *J. Phys. Chem. B* **2010**, *114*, 12888-12896, https://doi.org/10.1021/jp105183q.
- 29. Das, I.; Goel, N.; Gupta, S.K.; Agrawal, N.R. Electropolymerization of pyrrole: Dendrimers, nano-sized patterns and oscillations in potential in presence of aromatic and aliphatic surfactants. *J. Electroanal. Chem.* **2012**, *670*, 1-10, https://doi.org/10.1016/j.jelechem.2012.01.023.
- 30. Aoki, K.; Mukoyama, I.; Chen, J. Competition between Polymerization and Dissolution of Poly(3-methylthiophene) Films. *Russian Journal of Electrochemistry* **2004**, *40*, 280-285, https://doi.org/10.1023/B:RUEL.0000019665.59805.4c.
- 31. Bagheri, A.; Hassani Marand, M. Voltammetric and Potentiometric Determination of Cu²⁺, using an Overoxidized Polypyrrole Based Electrochemical Sensor. *Russ. J. Electrochem.* **2020**, *56*, 453–461, https://doi.org/10.1134/S1023193520060026.
- 32. Joshi, N.C.; Malik, S.; Gururani, P. Utilization of Polypyrrole/ZnO Nanocomposite in the Adsorptive Removal of Cu ²⁺, Pb ²⁺ and Cd ²⁺ Ions from Wastewater. *Letters in Applied NanoBioScience* **2021**, *10*, 2339–2351, https://doi.org/10.33263/LIANBS103.23392351.
- 33. Tkach, V.V.; Kushnir, M.V.; de Oliveira, S.C.; Lystvan, V.V.; Dytynchenko, I.M.; da Silva, A.O.; Ivanushko, Y.G.; Molodianu, A.F.; Luganska, O.V.; Yagodynets, P.I.; Kormosh, Z.O. Theoretical Description for Perillartine Electrochemical Determination, Assisted by Poly(Hydroquinones)/RuO₄ Composite. *Mater. Int.* **2021**, *3*, 3, https://doi.org/10.33263/Materials32.003.
- 34. Tkach, V.V.; Kushnir, M.V.; Ahafonova, O.V.; Biryuk, I.G.; de Oliveira, S.C.; Yagodynets, P.I.; Kormosh, Z.O.; Vaz dos Reis, L.; Palamarek, K.V.; Nezveshchuk-Kohut, T.S. The Theoretical Description for the Perylaldehyde Aldoxime Electrochemical Determination, Assisted by the Novel Squaraine Dye-VO(OH)-Composite. *Orbital: Electron. J. Chem.* **2020**, *12*, 148–153, https://doi.org/10.17807/orbital.v12i3.1498.
- 35. Tkach V.V.; Kushnir, M.V.; de Oliveira S.C.; Kormosh, Z.O.; Luganska, O.V.; Vaz dos Reis, L.; Ivanushko, Y.G.; Yagodynets, P.I.; Pochenchuk, G.M. A Descrição Teórica da Determinação Eletroquímica do Fármaco Perilartina, Assistida pelo Oxihidróxido de Cobalto, Emparelhado com o Seu Dióxido. *Rev. Colomb. Cienc. Quím. Farm.* **2022**, *51*, 1098–1113, https://doi.org/10.15446/rcciquifa.v51n3.106036.

Publisher's Note & Disclaimer

The statements, opinions, and data presented in this publication are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim any responsibility for the accuracy, completeness, or reliability of the content. Neither the publisher nor the editor(s) assume any legal liability for any errors, omissions, or consequences arising from the use of the information presented in this publication. Furthermore, the publisher and/or the editor(s) disclaim any liability for any injury, damage, or loss to persons or property that may result from the use of any ideas, methods, instructions, or products mentioned in the content. Readers are encouraged to independently verify any information before relying on it, and the publisher assumes no responsibility for any consequences arising from the use of materials contained in this publication.