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Abstract: The possibility for the tobacco nitrosocompounds electrochemical determination on cobalt 

(III) oxyhydroxide is evaluated theoretically. If the redox pair CoO(OH)/CoO2 is used, two 

possibilities of the electrochemical reaction involve the nitroso group oxidation or N-oxidation. As for 

N-nitrosoanabatine, another oxidation reaction involving the isolated double bond is possible. All of 

the reactions are efficient from an electroanalytical point of view, providing efficient analytical signal 

interpretation. The sensor may be used to measure either global nitrosyl compounds concentration or 

the concentration of the specific organic nitrosyls from tobacco, like N-nitrosonornicotine, N-

nitrosoanabasine, and N-nitrosoanabatine. As for the oscillatory behavior, its probability becomes low 

in neutral media and augments in an alkaline medium and even more in an acidic medium, due to the 

interaction of ionic forms with a double electric layer.  

Keywords: tobacco-specific nitrosamines; N-nitrosocompounds; conducting polymers; cobalt (III) 

oxyhydroxide; electrochemical sensors; electrochemical oscillations; stable steady-state. 
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1. Introduction 

Organic nitrosocompounds [1–4] are among the most toxic mutagens and teratogens 

in the world. They may have a natural, semisynthetic, or synthetic origin. Either C- or 

especially N-nitrosyls are considered aggressive pollutants for the environment.  

Generally, the nitroso- and nitrosamino compounds are obtained in organisms by 

nitrate and nitrite metabolism in acidic media, yielding a strong electrophile, the nitrosyl 

cation:  

NO3
- + 4H+ + 2e- → NO+ + 2H2O                  (1) 

NO2
- + 2H+  → NO+ + H2O                            (2) 

Which thereby participates in the electrophilic reactions in the organism, yielding 

toxic derivatives. The same process also occurs in plants, including tobacco, where the 

alkaloid secondary amine reacts with the nitrosyl cation, yielding the specific tobacco 

nitrosamines, the most characteristic of which are described in Figure 1.  
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Figure 1. N-nitrosonornicotine, N-nitrosoanabasine, and N-nitrosoanabatine. 

All of them appear either in natural conditions or during the tobacco curing and 

processing [5–9]. They are highly toxic not only for those who actively smoke but also for 

those who smoke passively, which is why their determination is highly relevant [10–14], and 

the electrochemical sensing may be an interesting response to this question.  

Being an intermediary compound in the nitrogroup electrochemical reduction to an 

aminogroup, the nitrosyl moiety is electrochemically active [15–18], thereby being capable of 

participating in either anodic or cathodic processes. Moreover, the pyridinic ring is also 

electrochemically active, as it possesses a nitrogen atom and aromatic fragments [19–21].  

Therefore, as a semiconducting electroactive material, the cobalt(III) oxyhydroxide 

may be used as an electrode modifier for tobacco nitrosamines electrochemical determination 

[22–26]. Moreover, both CoO/CoO(OH) and CoO(OH)/CoO2 redox pairs may be used. 

Nevertheless, the electrochemical sensitivity depends highly on tobacco nitrosamines or their 

oxidation products ionization in a double electric layer (DEL), which may highly impact the 

analytical signal interpretation and the electroanalytical process stability [27–32]. This impact 

may only be detailed by an a priori theoretical investigation involving the mechanism 

suggestion and the development and analysis of the corresponding mathematical model [33–

35].  

So, the goal of our work is to evaluate, from the theoretical point of view, the 

behavior of the system with specific tobacco nitrosamines determination, assisted by 

CoO(OH)-modified electrode by use of CoO(OH)/CoO2 redox pair. The corresponding 

reaction mechanism is suggested, and the corresponding mathematical model is developed 
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and analyzed from a stability point of view in order to infer the condition of the most efficient 

sensing and the realization of the instabilities. Also, the behavior of this system will be 

compared to that of similar ones [33–35].  

2. Materials and Methods 

In the case of the use of the CoO(OH)/CoO2 redox pair, cobalt (III) oxyhydroxide is 

oxidized, yielding cobalt dioxide as (3):  

CoO(OH) + OH- - e- → CoO2 + H2O                             (3) 

Being a strong oxidant, cobalt (IV) oxide will thereby oxidize TSNA by either the 

nitroso group or the pyridinic nitrogen atom. Yet for the anabatine molecule, the third 

oxidation scenario involves the isolated double bond of the tetrahydropyridine moiety. All of 

the oxidation scenarios are joined in Figure 2.  
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Figure 2. The scheme of the electroanalytic process of N-nitrosonornicotine and N-nitrosoanabatine. 

Taking into account the behavior of both analytes and accepting some assumptions 

[33–35], we describe the behavior of this system by a trivariate equation set (4):  

{
 
 

 
 

𝑑𝑛

𝑑𝑡
=

2

𝛿
(
𝛥

𝛿
(𝑛0 − 𝑛) − 𝑟11 − 𝑟12)

𝑑𝑎

𝑑𝑡
=

2

𝛿
(
𝐴

𝛿
(𝑎0 − 𝑎) − 𝑟21 − 𝑟22 − 𝑟𝑤)

𝑑𝑐

𝑑𝑡
=

1

𝐶
(𝑟11 + 𝑟12 + 𝑟21 + 𝑟22 + 𝑟𝑤 − 𝑟3)

                       (4) 

In which n and a are nitrosonornicotine and nitrosoanabatine concentrations in the 

pre-surface layer, n0, and a0 are the correspondent analytes bulk concentrations, 𝛥 and A are 

the correspondent diffusion coefficient, c is the cobalt (III) oxyhydroxide surface coverage 

degree, C is its maximal surface concentration, and the parameters r are the correspondent 

reaction rates, calculated as:  

𝑟11 = 𝑘11𝑛(1 − 𝑐)
2                                                           (5) 

𝑟12 = 𝑘11𝑛(1 − 𝑐)
2 exp(−𝜆𝑛)                                         (6) 

𝑟21 = 𝑘21𝑎(1 − 𝑐)
2                                                           (7) 
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𝑟22 = 𝑘21𝑎(1 − 𝑐)
2 exp(−𝜇𝑎)                                         (8) 

𝑟𝑤 = 𝑘𝑤𝑎(1 − 𝑐)
2                                                      (9) 

𝑟3 = 𝑘3𝑐 exp (
𝐹𝜑0

𝑅𝑇
)                                                        (10) 

In which the parameters k are the corresponding reaction rate constants, 𝜆 and 𝜇 stand 

for the parameters relating the DEL ionic force and related electrophysical properties with the 

N-acynitroform formation during the oxidation, F is the Faraday number, 𝜑0 stands for zero-

charge-related potential slope, R is the universal gas constant, and T is the absolute 

temperature.  

In basic media, for which this model is valid, the oscillatory behavior is more 

probable than for the neutral media, due to the formation of pseudoacid ion as oxidation 

product (see the similar systems for perilartine electrochemical determination [33–35]), but 

less probable than for acidic media, due to the total ionization of the pyridinic ring in both of 

the compounds. Either way, the CoO(OH)-assisted electrooxidation may be proven efficient, 

as shown below.  

3. Results and Discussion 

We investigate the behavior of the system of TSNA electrooxidation in the 

CoO(OH)/CoO2-modified anode by analyzing the equation set (4) by means of linear stability 

theory and expose the Jacobian steady-state members as (11):  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                                         (11) 

In which:  

𝑎11 =
2

𝛿
(−

𝛥

𝛿
− 𝑘11(1 − 𝑐)

2 − 𝑘11(1 − 𝑐)
2 exp(−𝜆𝑛) + 𝜆𝑘11(1 − 𝑐)

2 exp(−𝜆𝑛))  (12) 

𝑎12 = 0                                                                         (13) 

𝑎13 =
2

𝛿
(2𝑘11𝑛(1 − 𝑐) + 2𝑘11𝑛(1 − 𝑐) exp(−𝜆𝑛))   (14) 

𝑎21 = 0                                                                         (15) 

𝑎22 =
2

𝛿
(−

𝐴

𝛿
− 𝑘21(1 − 𝑐)

2 − 𝑘21 exp(−𝜇𝑎) + 𝜇𝑘21 exp(−𝜇𝑎) − 𝑘𝑤(1 − 𝑐)
2)     (16) 

𝑎23 =
2

𝛿
(2𝑘21𝑎(1 − 𝑐) + 2𝑘21𝑎(1 − 𝑐) exp(−𝜇𝑎) + 2𝑘𝑤𝑎(1 − 𝑐))  (17) 

𝑎31 =
1

𝐶
(𝑘11(1 − 𝑐)

2 + 𝑘11(1 − 𝑐)
2 exp(−𝜆𝑛) − 𝜆𝑘11(1 − 𝑐)

2 exp(−𝜆𝑛))    (18) 

𝑎32 =
1

𝐶
(𝑘21(1 − 𝑐)

2 + 𝑘21 exp(−𝜇𝑎) − 𝜇𝑘21 exp(−𝜇𝑎) + 𝑘𝑤(1 − 𝑐)
2)         (19) 

𝑎33 =
1

𝐶
(−2𝑘11𝑛(1 − 𝑐) − 2𝑘11𝑛(1 − 𝑐) exp(−𝜆𝑛)−2𝑘21𝑎(1 − 𝑐) − 2𝑘21𝑎(1 −

𝑐) exp(−𝜇𝑎) − 2𝑘𝑤𝑎(1 − 𝑐) − 𝑘3 exp (
𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘3𝑐 exp (

𝐹𝜑0

𝑅𝑇
))                    (20) 

Taking into account the main diagonal elements (12), (16), and (20), important for the 

positive callback, described by the positive addendums in these elements, we may see that it 

contains three elements, capable of being positive. Those elements are 𝜆𝑘11(1 − 𝑐)
2 exp(−𝜆𝑛) >

0, if 𝜆 > 0, 𝜇𝑘21 exp(−𝜇𝑎) > 0, if 𝜇 > 0, describing the positive callback during the DEL 

influences of the chemical stages and 𝑗𝑘3𝑐 exp (
𝐹𝜑0

𝑅𝑇
) > 0 if j>0, describing the positive callback 

during the DEL influences of the electrochemical stage. This callback is manifested in the 

oscillatory behavior.  

The oscillation amplitude and frequency will depend on the background electrolyte 

composition, as in [29–32]. Moreover, the oscillatory behavior probability will be directly 
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dependent on pH. In neutral pH, in which the nitrosyl oxidation product becomes more 

ionized, the parameters 𝜆 and 𝜇 are set equal to zero; thus, the expressions 𝜇𝑘21 exp(−𝜇𝑎) =

𝜆𝑘11(1 − 𝑐)
2 exp(−𝜆𝑛) = 0, and the exponential expressions exp(−𝜇𝑎) = exp(−𝜆𝑛) = 1, excluding 

two of three potentially positive elements, leaving only one, related to the electrochemical 

stage, such as in [33–35].  

We simplify the steady-state stability analysis, reexposing the Jacobian determinant 

as (21):  

|
−𝜅 − 𝛯 0 𝛲
0 −𝛼 − 𝛬 𝛵
𝛯 𝛬 −𝛲 − 𝛵 − 𝛺

|                                               (21) 

Opening the brackets and applying the Det J<0 conditions, inferred from the criterion, 

we can prove the presence of an efficient diffusion-controlled electroanalytical system, in 

which the steady-state stability is easy to obtain and maintain, and the steady-state stability 

requisite (22):  

𝜅(𝛼𝛲 + 𝛼𝛵 + 𝛼𝛺 + 𝛬𝛲 + 𝛬𝛺) + 𝛯(𝛼𝛵 + 𝛼𝛺 + 𝛬𝛺) > 0           (22) 

The requisite (22) is satisfied in a vast topological parameter region, being thereby 

correspondent to the linear dependence between the electrochemical parameter and the TSNA 

concentrations, as neither analytes nor the modifier undergoes the side reactions, capable of 

affecting their stability unless foreseen by the electroanalytical process. The requisite (22) is 

more likely to be satisfied in neutral than in the alkaline and even more than in an acidic 

medium.  

As for the detection limit, described by the monotonic instability, it delimits the 

margin between the stable steady-states and unstable states. Its realization condition will be 

thereby given as (23):  

𝜅(𝛼𝛲 + 𝛼𝛵 + 𝛼𝛺 + 𝛬𝛲 + 𝛬𝛺) + 𝛯(𝛼𝛵 + 𝛼𝛺 + 𝛬𝛺) = 0                         (23) 

In the acidic media, the equation set (4) will remain intact, but the rate expressions 

will be rewritten as:  

𝑟11 = 𝑘11𝑛(1 − 𝑐)
2 exp(−𝜆𝑛)                                                      (24) 

𝑟12 = 𝑘11𝑛(1 − 𝑐)
2 exp(−𝜆𝑛)                                                      (25) 

𝑟21 = 𝑘21𝑎(1 − 𝑐)
2 exp(−𝜇𝑎)                                                      (26) 

𝑟22 = 𝑘21𝑎(1 − 𝑐)
2 exp(−𝜇𝑎)                                                      (27) 

𝑟𝑤 = 𝑘𝑤𝑎(1 − 𝑐)
2 exp(−𝜇𝑎)                                                        (28) 

The system will thereby become similar to that described in [35] and even less stable 

than in the alkaline or neutral medium. Therefore, the neutral or neutralized (in the case of the 

acidic or basic electrode modifier component, if composite material is used) medium is the 

most suitable for CoO(OH)-assisted TSNA electrochemical determination; the neutral 

medium is preferred.  

4. Conclusions 

From the analysis of the system with CoO(OH)-assisted TSNA electrochemical 

determination, it is possible to conclude that this process is a highly efficient diffusion-

controlled process in which the linear dependence between the electrochemical parameter and 

concentration is easily obtained and maintained. The easy interpretation of the analytical 

signal is given mostly in a neutral medium, in which neither the analytes nor their oxidation 

products are not ionized and, thereby, their ionic forms do not influence the DEL ionic force 

and related electrophysical properties, making it less probable the oscillatory behavior. 
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