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Abstract: The possibility for the tobacco nitrosocompounds electrochemical determination on cobalt
(II) oxyhydroxide is evaluated theoretically. If the redox pair CoO(OH)/CoO, is used, two
possibilities of the electrochemical reaction involve the nitroso group oxidation or N-oxidation. As for
N-nitrosoanabatine, another oxidation reaction involving the isolated double bond is possible. All of
the reactions are efficient from an electroanalytical point of view, providing efficient analytical signal
interpretation. The sensor may be used to measure either global nitrosyl compounds concentration or
the concentration of the specific organic nitrosyls from tobacco, like N-nitrosonornicotine, N-
nitrosoanabasine, and N-nitrosoanabatine. As for the oscillatory behavior, its probability becomes low
in neutral media and augments in an alkaline medium and even more in an acidic medium, due to the
interaction of ionic forms with a double electric layer.

Keywords: tobacco-specific nitrosamines; N-nitrosocompounds; conducting polymers; cobalt (III)
oxyhydroxide; electrochemical sensors; electrochemical oscillations; stable steady-state.
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1. Introduction

Organic nitrosocompounds [1-4] are among the most toxic mutagens and teratogens
in the world. They may have a natural, semisynthetic, or synthetic origin. Either C- or
especially N-nitrosyls are considered aggressive pollutants for the environment.

Generally, the nitroso- and nitrosamino compounds are obtained in organisms by
nitrate and nitrite metabolism in acidic media, yielding a strong electrophile, the nitrosyl
cation:

NO; +4H" +2¢" > NO" + 2H,0 (1)
NO; +2H" - NO" + H,0 ()

Which thereby participates in the electrophilic reactions in the organism, yielding
toxic derivatives. The same process also occurs in plants, including tobacco, where the
alkaloid secondary amine reacts with the nitrosyl cation, yielding the specific tobacco
nitrosamines, the most characteristic of which are described in Figure 1.

Figure 1. N-nitrosonornicotine, N-nitrosoanabasine, and N-nitrosoanabatine.

All of them appear either in natural conditions or during the tobacco curing and
processing [5-9]. They are highly toxic not only for those who actively smoke but also for
those who smoke passively, which is why their determination is highly relevant [10-14], and
the electrochemical sensing may be an interesting response to this question.

Being an intermediary compound in the nitrogroup electrochemical reduction to an
aminogroup, the nitrosyl moiety is electrochemically active [15—18], thereby being capable of
participating in either anodic or cathodic processes. Moreover, the pyridinic ring is also
electrochemically active, as it possesses a nitrogen atom and aromatic fragments [19-21].

Therefore, as a semiconducting electroactive material, the cobalt(Ill) oxyhydroxide
may be used as an electrode modifier for tobacco nitrosamines electrochemical determination
[22-26]. Moreover, both CoO/CoO(OH) and CoO(OH)/Co0O> redox pairs may be used.
Nevertheless, the electrochemical sensitivity depends highly on tobacco nitrosamines or their
oxidation products ionization in a double electric layer (DEL), which may highly impact the
analytical signal interpretation and the electroanalytical process stability [27-32]. This impact
may only be detailed by an a priori theoretical investigation involving the mechanism
suggestion and the development and analysis of the corresponding mathematical model [33—
35].

So, the goal of our work is to evaluate, from the theoretical point of view, the
behavior of the system with specific tobacco nitrosamines determination, assisted by
CoO(OH)-modified electrode by use of CoO(OH)/CoO: redox pair. The corresponding
reaction mechanism is suggested, and the corresponding mathematical model is developed
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and analyzed from a stability point of view in order to infer the condition of the most efficient
sensing and the realization of the instabilities. Also, the behavior of this system will be
compared to that of similar ones [33-35].

2. Materials and Methods

In the case of the use of the CoO(OH)/CoO> redox pair, cobalt (III) oxyhydroxide is
oxidized, yielding cobalt dioxide as (3):

CoO(OH) + OH - ¢ 2 Co00> + H20 3)

Being a strong oxidant, cobalt (IV) oxide will thereby oxidize TSNA by either the
nitroso group or the pyridinic nitrogen atom. Yet for the anabatine molecule, the third
oxidation scenario involves the isolated double bond of the tetrahydropyridine moiety. All of
the oxidation scenarios are joined in Figure 2.
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Figure 2. The scheme of the electroanalytic process of N-nitrosonornicotine and N-nitrosoanabatine.

Taking into account the behavior of both analytes and accepting some assumptions
[33-35], we describe the behavior of this system by a trivariate equation set (4):

dn 2 /[A
( E—E(g(no_n)_rll_rlz)

da 2 (A
Ezg(g(ao_a)_ru_rzz_rw) 4)
dc

E=%(T11 + 112+ 121 1 1y —T3)

In which n and a are nitrosonornicotine and nitrosoanabatine concentrations in the
pre-surface layer, no, and ao are the correspondent analytes bulk concentrations, 4 and A are
the correspondent diffusion coefficient, ¢ is the cobalt (III) oxyhydroxide surface coverage
degree, C is its maximal surface concentration, and the parameters r are the correspondent

reaction rates, calculated as:

r11 = k(1 — C)z (5)
T2 = kyn(1— C)z exp(—An) (6)
721 = kyra(l — C)Z (7
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132 = ky1a(1 — ¢)? exp(—pa) (8)
1, = kya(l —c)? 9)
r3 = kzcexp (%) (10)

In which the parameters k are the corresponding reaction rate constants, A and y stand
for the parameters relating the DEL ionic force and related electrophysical properties with the
N-acynitroform formation during the oxidation, F is the Faraday number, ¢, stands for zero-
charge-related potential slope, R is the universal gas constant, and T is the absolute
temperature.

In basic media, for which this model is valid, the oscillatory behavior is more
probable than for the neutral media, due to the formation of pseudoacid ion as oxidation
product (see the similar systems for perilartine electrochemical determination [33-35]), but
less probable than for acidic media, due to the total ionization of the pyridinic ring in both of
the compounds. Either way, the CoO(OH)-assisted electrooxidation may be proven efficient,
as shown below.

3. Results and Discussion

We investigate the behavior of the system of TSNA electrooxidation in the
CoO(OH)/Co0;2-modified anode by analyzing the equation set (4) by means of linear stability
theory and expose the Jacobian steady-state members as (11):

a1 Q12 Q13
<a21 az2 a23> (11)

asz; dszz; dsz

In which:
ay, = g(_g — kg (1= €)% — keyy (1 — €)% exp(=An) + Aky (1 — )2 exp(—An)) (12)
a, =0 (13)
a3 = 5 (2kyn(1 =€) + 2kyn(1 — c) exp(—in)) (14)
ay; =0 (15)

Q2 = %(_g — ko1 (1 =€) — kyy exp(—pa) + pky; exp(—ua) -k, (1 - C)Z) (16)
Ay = %(Zkua(l —c) + 2ky;a(1 — ¢) exp(—ua) + 2k, a(1 —c)) (17)

az1 = %(kll(l - C)Z +kqyy (1 - C)Z exp(—An) — Akll(l - C)z exp(—An)) (18)

Q32 = 2 (s (1= )7 + kyy exp(—pa) — iy exp(—pa) + k(1 =0 (19)
az3 = %(—Zklln(l —c) — 2kyn(1 —c¢) exp(—1An) —2k,,a(1 — ¢) — 2k, a(1 —
c)exp(—ua) — 2k,a(1 —c) — ks exp (%) jkscexp (%)) (20)

Taking into account the main diagonal elements (12), (16), and (20), important for the
positive callback, described by the positive addendums in these elements, we may see that it
contains three elements, capable of being positive. Those elements are Ak,;(1 — ¢)? exp(—1n) >
0, if A >0, pky exp(—pa) >0, if u>0, describing the positive callback during the DEL
influences of the chemical stages and jk;c exp (%) > 0 if >0, describing the positive callback

during the DEL influences of the electrochemical stage. This callback is manifested in the
oscillatory behavior.

The oscillation amplitude and frequency will depend on the background electrolyte
composition, as in [29-32]. Moreover, the oscillatory behavior probability will be directly
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dependent on pH. In neutral pH, in which the nitrosyl oxidation product becomes more
ionized, the parameters A and p are set equal to zero; thus, the expressions uk,; exp(—ua) =
Aky1(1 —c)? exp(—An) = 0, and the exponential expressions exp(—ua) = exp(—in) = 1, excluding
two of three potentially positive elements, leaving only one, related to the electrochemical
stage, such as in [33-35].

We simplify the steady-state stability analysis, reexposing the Jacobian determinant
as (21):

k-5 0 P
0 —a-4 T 1)
g A —P-T-0

Opening the brackets and applying the Det J<0 conditions, inferred from the criterion,
we can prove the presence of an efficient diffusion-controlled electroanalytical system, in
which the steady-state stability is easy to obtain and maintain, and the steady-state stability
requisite (22):

K(aP+aT +a + AP+ AQ)+ E(aT +al + A2) >0 (22)

The requisite (22) is satisfied in a vast topological parameter region, being thereby
correspondent to the linear dependence between the electrochemical parameter and the TSNA
concentrations, as neither analytes nor the modifier undergoes the side reactions, capable of
affecting their stability unless foreseen by the electroanalytical process. The requisite (22) is
more likely to be satisfied in neutral than in the alkaline and even more than in an acidic
medium.

As for the detection limit, described by the monotonic instability, it delimits the
margin between the stable steady-states and unstable states. Its realization condition will be
thereby given as (23):

K(aP+aT +a + AP+ AQ)+ E(aT +a + A2) =0 (23)

In the acidic media, the equation set (4) will remain intact, but the rate expressions
will be rewritten as:

111 = kin(1 —c)? exp(—1An) (24)
112 = k(1 — ¢)? exp(—An) (25)
121 = ky1a(1 — c)? exp(—pa) (26)
122 = ky1a(1 — c)? exp(—pa) (27)
1, = kya(1l — c)? exp(—ua) (28)

The system will thereby become similar to that described in [35] and even less stable
than in the alkaline or neutral medium. Therefore, the neutral or neutralized (in the case of the
acidic or basic electrode modifier component, if composite material is used) medium is the
most suitable for CoO(OH)-assisted TSNA electrochemical determination; the neutral
medium is preferred.

4. Conclusions

From the analysis of the system with CoO(OH)-assisted TSNA electrochemical
determination, it is possible to conclude that this process is a highly efficient diffusion-
controlled process in which the linear dependence between the electrochemical parameter and
concentration is easily obtained and maintained. The easy interpretation of the analytical
signal is given mostly in a neutral medium, in which neither the analytes nor their oxidation
products are not ionized and, thereby, their ionic forms do not influence the DEL ionic force
and related electrophysical properties, making it less probable the oscillatory behavior.
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