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Abstract: It is recognized that antibiotics like ciprofloxacin can slow the progression of inflammatory
bowel disorders (IBD). However, when used at clinical doses, ciprofloxacin can have unfavorable
side effects, such as tendonitis and tendon rupture. Without targeted delivery, IBD drugs may be
absorbed into the systemic circulation, resulting in severe side effects. Ciprofloxacin will work better
and have fewer side effects if administered directly to the colon, the site of the ailment. This study
seeks to engineer a ciprofloxacin hydrochloride-loaded vesicular delivery system termed proniosomes
for possible colon targeting. Ciprofloxacin hydrochloride loaded proniosomes were prepared with
Span® 60, Tween® 60, and cholesterol by the slurry method via two carriers (dextrin and Neusilin®
FH2). They were targeted to the colon via the Eudragit® FS 30D-coated capsules. In vitro evaluations
[particle size, polydispersity index (PDI), entrapment efficiency, granule properties, scanning electron
microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and drug release study] were
carried out. The results showed particle sizes of < 100 nm and a PDI of <0.3 for optimum
formulations. FTIR investigations detected hydrogen bonding between the drug and other formulation
excipients. All the formulations demonstrated excellent entrapment efficiency (>80%). Eudragit® FS
30D-coated capsules (containing proniosomes) showed negligible/minimal release in the simulated
gastric fluid pH 1.2 and phosphate buffer pH 6.8 media, but profound release in the colonic media-
Phosphate buffer (pH 7.4). Ciprofloxacin hydrochloride was successfully targeted to the colon via the
vesicular system.

Keywords: Ciprofloxacin; proniosomes; vesicular drug delivery system; dextrin; Neusilin® FH2;
Eudragit® FS 30D.
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1. Introduction

Vesicular drug delivery platforms have advanced significantly in the area of
innovative drug delivery. This is because drug encapsulation in vesicular structures prolongs
the medication's time in the systemic circulation while reducing toxicity through selective
uptake [1-5]. One way to describe vesicular drug delivery systems is as highly organized
assemblies of one or more concentric lipid bilayers created when particular amphiphilic
building blocks are exposed to water. The innovative vesicular system aims to focus the
active ingredient at the site of action while also delivering the drug at a pace required by the
body to produce a therapeutic effect during treatment [6,7]. Additionally, vesicular drug
delivery systems operate as sustained release systems by delaying the elimination of quickly
digested medications. This lowers the cost of therapy by increasing drug bioavailability,
particularly in the case of poorly soluble pharmaceuticals. They can also entrap both
hydrophilic and lipophilic medications. Vesicular drug delivery platforms provide a variety of
benefits, but they are also severely constrained by the following: low drug loading efficiency
and drug leakage during storage [8-10].

As an alternative to niosomes, proniosomes have drawn much interest from
researchers. The drawbacks of liposomes or niosomal dispersion, such as physical instability
demonstrated by vesicle aggregation, fusion, size fluctuations, and drug leakage, can be
overcome using the proniosomal technique [5,11,12]. Proniosomes are water-soluble carrier
particles covered with a surfactant in a dry, free-flowing composition. A non-ionic surfactant
of the alkyl or dialkyl polyglycerol ether class and cholesterol are combined, and then the
mixture is hydrated in aqueous media or bodily fluids, resulting in microscopic lamellar
formations. Proniosomes are available as a dry powder, which adds to their ease in delivery,
storage, processing, and packing. They also offer the greatest flexibility and are stable [7, 13].

Numerous studies have focused on colon-targeted drug delivery in recent years
because of its potential to enhance the management of local disorders affecting the colon
while reducing systemic side effects [14-16]. Irritable bowel syndrome (IBS), Crohn’s
disease (CD), and ulcerative colitis are a few examples of colon-related illnesses. Because
these medications are delivered directly to the colon rather than first being digested in the
upper gastrointestinal (Gl) tract, a higher concentration can reach the colon with less systemic
absorption. Colonic mucosa is known to aid in the absorption of various medications, and the
colonic contents have a longer retention duration (up to 5 days), making this organ a suitable
site for drug delivery [17].

Ciprofloxacin hydrochloride (CIP-HCI) (Figure 1) is a well-known second-generation
fluoroquinolone antibiotic with a broad range of activity. It is highly bactericidal, has a broad
spectrum, and can permeate most tissues and accumulate in cells. It is a promising and
effective medication with strong antibacterial activity [17,18]. IBD may develop due to
microbial dysbiosis in the gut microbial population brought on by intestinal immune system
malfunction. Antibiotics may affect the course of IBD by reducing bacterial densities in the
gut lumen and changing the composition of the intestinal microbiota to favor beneficial
bacteria, since intestinal bacteria play a significant role in the development of IBD.
Additionally, they aim for particular microorganisms thought to be involved in the etiology of
IBD. Ciprofloxacin is one of the antibiotics that have been found useful in the management of
IBD [19-21].
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CIP-HCI dextrin

Neusilin FH2

Figure 1. Chemical structure of ciprofloxacin hydrochloride, dextrin, and Neusilin®.

Nanoparticles such as the proniosomes can prolong the circulation period and reduce
side effects by improving drug encapsulation and targeted delivery [20]. Some researchers
have reported the delivery of ciprofloxacin as a niosomal suspension in decreasing antibiotic
resistance in ciprofloxacin-resistant methicillin-resistant Staphylococcus aureus [18];
however, there is a shortage of information on the colon-targeted delivery of ciprofloxacin
vesicular carrier for the improved management of IBD. Furthermore, ciprofloxacin
hydrochloride, when given conventionally, is associated with side effects such as tendonitis,
tendon rupture, photosensitivity, inhibition of cartilage growth in fetuses and children, oral
thrush, and QT prolongation however targeting it to the colon may minimize these side
effects from occurring as negligible quantity of the drug is released before it gets to the colon
and thus a reduced amount of the drug is given and less side effects are experienced [20,21].
This study seeks to fabricate ciprofloxacin-loaded proniosomes for possible colon-targeted
delivery. To contribute to knowledge in this field, the objectives of this study are (i) to
formulate ciprofloxacin-loaded proniosomes, (ii) engineer them for possible colon targeting
via the utilization of Eudragit FS-30D capsules, and (iii) to conduct in vitro evaluations on
the formulations.

2. Materials and Methods

2.1. Materials.

The following materials were used in this study: ciprofloxacin HCI, Span® 60 and
Tween® 60 (Aladdin, China), Eudragit® FS 30D coated capsules (Evonik, Germany),
cholesterol (Abcams, United Kingdom), dextrin (BDH, England), Neusilin® FH2 (BASF,
Germany), analytical grade ethanol, sodium chloride, concentrated hydrochloric acid (Sigma
Aldrich, Germany).
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2.2. Methods.

2.2.1. Preparation of ciprofloxacin hydrochloride-loaded proniosomes.

Proniosomes were created utilizing the slurry process [11]. In a nutshell, accurately
weighed portions of a lipid mixture with different ratios of cholesterol and Span/Tween 60, as
presented in Tables 1 and 2, were added to a beaker containing 3 ml of ethanol. The mixture
was heated to 40°C and stirred on a magnetic stirrer to help dissolve the lipid combination,
followed by adding CIP-HCI (800 mg). After dissolution of the drug, dextrin (for dextrin-
based formulations) or Neusilin® FH2 (for Neusilin-based formulations) was added to make a
thick dispersion, which was further agitated until the organic solvent had entirely evaporated
(Figure 2). The resulting powder was then further dried overnight in a desiccator.

issolve lipid mixture
(cholesterol + Span 60 +
een 60) in ethanol

Stir on magnefic
stirrer at 40°C

{4

Add ciprofloxacin and
allow to dissolve

B

Add carriers (dextrin / =
Neusilin powder)
Evaporation of
organic solvent

Proniosomes are form
and stored in dessicator

Figure 2. Flow chart for the preparation of proniosomal formulations.

Table 1. Formula for dextrin-based formulation.

Formulation Surfactant: | Tween 60 | Span 60 | Cholesterol | CIP-HCI Carrier (dextrin)
number cholesterol (9) (9) (9) (9) (9)
DF1 11 - 1 1 0.8 5
DF4 11 1 - 1 0.8 5
DF7 11 0.5 0.5 1 0.8 5
PLACEBO 11 0.4 0.4 0.8 - 4

Table 2. Neusilin-based formulation.

Formulation | Surfactant: | Tween 60 | Span 60 | Cholesterol | CIP-HCI | Carrier (Neusilin FH2)
number cholesterol (9) (9) 9) (9) (9)
NF3 1:15 - 0.8 1.2 0.8 5
NF4 11 1 - 1 0.8 5
NF7 1:1 0.5 0.5 1 0.8 5
PLACEBO 11 0.4 0.4 0.8 - 4
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2.2.2. In vitro evaluation of CIP-HCI-loaded proniosomes.
2.2.2.1. Granulation properties of CIP-HCI-loaded proniosomes.

The powdered proniosomes were weighed in 5 g portions. Each one was added to a
measuring cylinder with a capacity of 50 mL. The cylinder was dropped on a wooden
platform three times at intervals of two seconds from a height of one inch, and the volume
occupied by the powders was measured, indicating the bulk volume. Then, tapped volume
was determined by tapping on the wooden platform until the volume of the powder remained
constant. The tapped density and bulk density are calculated in equations 1 and 2. Other
granulation parameters, such as flow rate, angle of repose, Hausner’s quotient, and Carr’s
compressibility index, were also determined.

Bulk density = mass of powder 1)

voiume

Tapped density = 1eS0/powder )y

volume

2.2.2.2. Entrapment efficiency/drug loading capacity.

The entrapment efficiency was determined by hydrating 100mg of powdered
proniosomes in 5 mL phosphate buffer (pH 7.4). A 1ml volume was centrifuged at 17709 g
for 5 min. The supernatant was then analyzed for the free drug at a wavelength of 249 nm
[22] using a UV-Vis spectrophotometer (Jenway, Bibby Scientific Limited, UK). All the
assays were done in triplicate. The entrapment efficiency and drug loading capacity were
calculated according to equations 3 and 4 below.

total drug loaded—drug in supernatant

Entrapment ef ficiency = total driig loaded x100 (3)

amount of drug entrapped
ntof drug entrapped 10095  (4)
Total weight of the nanoparticles

Drug loading capacity =

2.2.2.3. Particle size/polydispersity index (PDI).

The mean size and size distribution of freshly prepared niosomes from proniosomes
were determined by photon correlation spectroscopy using a zeta nanosizer (Malvern
Instruments, Malvern, UK). Each sample was diluted with water to the proper concentration,
and size analysis was conducted at a detection angle of 90°C and a temperature of 25°C. The
device was used to determine the “niosomes’ particle size and polydispersity index.

2.2.2.4. Scanning electron microscopy (SEM).

The scanning electron microscope (SEM) (Hitachi Japan, Model 3400N) was used to
analyze and identify the surface morphology of the carriers (dextrin and Neusilin® FH2) and
the ciprofloxacin-loaded proniosomes. Thin layers of gold particles were applied to the
samples, which were then placed on a glass slide, and SEM pictures were captured at a
magnification of 500x [23].
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2.2.2.5. Fourier transform infrared spectroscopy (FTIR).

FTIR was used to investigate drug-excipient interactions or compatibility
investigations. The FTIR spectra of the drug (CIP-HCI), blank proniosomes, and CIP-HCI-
loaded niosomes were obtained using an infrared spectrophotometer. The formulations were
made in KBr disks (2 mg sample/200 mg KBr) using a hydrostatic press at 275790.292
Pascals of force for 4 min, and the spectrum was generated between the wavelength range of
4000 and 400 cm™.

2.2.2.6. Encapsulation of proniosomes.

Pre-coated Eudragit® FD30S capsules (Evonik, Germany) were also employed for the
colon delivery of the proniosomes. A 300 mg quantity of the proniosomes equivalent to 50mg
of CIP-HCI was filled into these capsules and stored till further use.

2.2.2.7. In vitro drug release of ciprofloxacin proniosomal formulation.

The in vitro drug release study used the rotating basket method with the coated
capsules trapped in the basket. The dissolution studies were done sequentially at intervals in
simulated gastric fluid (SGF) (pH 1.2) and phosphate buffer (pH 6.8 and 7.4) for a period of
10h. The temperature and speed were maintained at 37 £ 1°C and 100rpm, respectively. At
predetermined time intervals, 5ml was withdrawn and replaced with a corresponding fresh
medium to maintain constant volume. Each of the samples obtained for each drug was then
assayed using the UV-spectrophotometer (Jenway, Bibby Scientific Limited, UK) at the
predetermined wavelength of 249nm. All the assays were done in triplicate.

2.2.2.8. Statistical analysis.

Data were analyzed using SPSS Version 26.0 (SPSS Inc., Chicago, IL, US). Values
were presented as mean + SD (standard deviation). Means were compared via the one-way
ANOVA, and p < 0.05 was considered statistically significant.

3. Results and Discussion

3.1. Granulation properties.

The granulation properties generally indicate fair passable flow behavior. Refer to
Table 3. The angle of repose measures the internal friction or cohesion of the particles. It is
high if cohesive and other forces are high, and vice versa. Generally, if the angle exceeds 50°,
the powder will not flow satisfactorily, while materials with values near the minimum, circa
25°, flow easily and well [11,24,25]. It should be noted that two different carriers (dextrin
and Neusilin® FH2) were used. The dextrin-based proniosomes showed the best flow under
gravity, followed by Neusilin-based proniosomes. All the batches showed acceptable
granulation qualities as determined by the results of the angle of repose, "Hausner’s quotient
(HQ), and ’Carr’s compressibility index (CI). HQ values below 1.25 imply good flow, and
those above 1.25 denote bad flow. For HQ levels between 1.25 and 1.5, a glidant must be
added to increase flow. The flow scale of powder and granulations has been rated outstanding
for CI values between 5 and 15%, acceptable for 12 to 16%, and fair to passable for 18 to
21%, while between 23 and 35% is rated as poor, 33 to 38% is rated as very poor, and values
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>40% are rated as extremely poor [26]. HQ and CI are helpful indices for evaluating the flow
characteristics of medication granules and powders. The general flow behavior of the
proniosomes was sufficient to guarantee free and easy flow into the capsules.

Table 3. Granule properties of CIP-HCI-loaded proniosomes.

Batches Bulk Tgpped Flow _ Angle of Hausl_ler’s Carr’s cc_)mpressibility
Density(g/ml) | Density(g/ml) | Rate(g/min) repose guotient index
DF1 0.50 0.56 4.20 21.8 1.12 12
DF4 0.42 0.50 2.33 23.6 1.19 16
DF7 0.36 0.42 4.39 23.6 1.17 14.3
DPlacebo 0.36 0.63 1.12 36.9 1.75 42.8
NF3 0.63 0.71 3.76 28.1 1.13 11.3
NF4 0.56 0.63 3.97 25.6 1.13 11.1
NF7 0.56 0.63 4.95 28.1 1.13 11.1
NPlacebo 0.57 0.62 3.57 218 1.09 8.1

*DF 1- DF 7 — Dextrin-based proniosomal formulations containing ciprofloxacin NF 3 — NF 7 — Neusilin-based
proniosomal formulations containing ciprofloxacin.

3.2. Entrapment efficiency and drug loading capacity.

The CIP-HCI-loaded proniosomes’ encapsulation efficiency (EE) ranged from 79.40
+ 0.82 to 92.90 + 0.73%, and their drug loading capacities were between 12.70 = 0.05 and
1490 + 0.12% (Table 4 ). Most of the proniosomal formulations had EE > 80%. Drug
entrapment is influenced by the preparation method, chain length, and hydrophilic head group
size of the non-ionic surfactant. In general, proniosomes with long alkyl chain surfactants are
reported to have increased entrapment efficiency [27]. The Neusilin®-based proniosomes
(NF4) showed significantly higher entrapment (p <0.05) of 92.9% compared to all other
batches. Tween® 60, which has a high HLB value of 14.7 and a long alkyl chain in batch
NF4, may cause greater entrapment. The ease of hydration with the carriers may have also
contributed to the high EE seen. Proniosomes are more likely to entrap more medications
than traditional niosomes since the carriers are known to impart a larger surface area and
flexibility [28]. Dextrin and Neusilin® have imparted the advantage of a larger surface area. A
significant difference (p <0.05) in EE was generally observed across the batches when the
data were subjected to Post Hoc tests. The ratio of the amount of medicine that is trapped to
the total weight of polymers used in the formulation is known as the drug loading capacity
(DLC) [29]. There was no significant difference in DLC between any of the batches.

Table 4. Entrapment efficiency and drug loading capacity of CIP-HCI-loaded proniosomes.

Batches EE (%) DLC (%)
DF1 86.10 +£0.82 13.80 £0.13
DF4 86.80 £ 0.41 13.90 £ 0.06
DF7 88.80 £ 0.65 14.20+0.10
NF3 87.90+0.24 14.10 + 0.04
NF4 92.90 +£0.73 14.90 £0.12
NF7 79.40 £0.33 12.70 £0.05

*DF 1- DF 7 — Dextrin-based proniosomal formulations containing ciprofloxacin, NF 3 — NF 7 — Neusilin-based
proniosomal formulations containing ciprofloxacin.

3.3. Particle size and polydispersity index(PDI).

Particle-size analysis of the proniosomal formulation was 94.22 nm and 61.87 nm for
dextrin and Neusilin®-based formulations, respectively. On the other hand, the polydispersity
index was 0.173 and 0.289 for dextrin and Neusilin®-based formulations, respectively (Table
5, Figure 3). The particle size of the dextrin-based proniosomal formulation was significantly
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smaller (P < 0.05) than that of the Neusilin®-based formulation. Both dextrin and Neusilin®—
based proniosomal formulations had particle sizes (< 100 nm) in nano size ranges. Nano-
sized particles are easily taken up at the cellular level. They possess unique features such as
prolonged blood circulation and reduced enzyme degradation in vivo [30]. Our findings imply
that the proniosomal nanoparticles may accumulate at the site of inflammation in
inflammatory bowel disease (IBD) [20,21]. The polydispersity index values (PDI) are used to
indicate the consistency and quality of dispersed systems. When PDI is closer to zero, it
implies the formulation is monodispersed and homogenous [31,32]. The polydispersity
indices of both formulations were less than 0.3, which is considered ideal and indicates a
narrow size distribution. This shows the formulation is monodispersed [33,34]. Therefore, the
formulations may have a great tendency for stability in vivo (See Figure 3).

Table 5. Particle size and polydispersity index of CIP-HCI-loaded proniosomes.

Batches Particle size (nm) PDI
DF7 61.87 £0.82 0.170 + 0.002
NF3 94.22 +0.18 0.290 + 0.006

Results
Results

Size (dn... % Volume: St Dev (dn...
Z-Average (dnm): 9422 Peak1: 3024 98 1292

Size (d.n... % Volume: St Dev (d.n...

Z-Average (d.nm): 6187 Peak1: 10.14 463 2748
i NRZ e 10 w22 pdl; 0289 Peak2: 3129 52 1671
Worcapt: 0378 Peak3: 0097 2 18 Intercept: 0.942 Peak3: 5167 05 8165

Result quality Refer to quality report Result quality Good

Sae Dstrdwtion by Volume Size Distridution by Volume

Voilumeo (Porcent)
= -~ ~ o = S o
Volume (Percent)

See (dm) Size (d nm)

NF 3 DF7
Figure 3. Particle size distribution of Neusilin and Dextrin—based proniosomal formulations loaded with
ciprofloxacin.

3.4. Scanning electron microscopy (SEM).

The morphology of the proniosomes was investigated using SEM. Figures 4 and 5
display the SEM findings. The carriers are usually coated with a thin surfactant coating
during the production of proniosomes [35]. According to our findings, the dextrin or Neusilin
powder was coated with a surfactant and lipid mixture. Some researchers have also
documented aggregation of individual nanoparticles that appeared smooth-surfaced and close
to spherical to polyhedral shape for maltodextrin-based formulations loaded with resveratrol
[36]. Generally, the proniosomal formulations seen in the SEM results showed thicker
surfaces, depicting that the carrier or powders were coated with the surfactant and cholesterol
mixture. In summary, the dextrin-loaded proniosomes appeared as aggregates of porous
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particles, while Neusilin-based proniosomes appeared cracked and flaky. This finding agreed
with the report of Shruthi and his team [36]. The porous structure of the dextrin-loaded
proniosomes may suggest ease of hydration in vivo.

Figure 4. Morphology of Neusilin-based ciprofloxacin proniosomal formulation (NF) and morphology of
Neusilin carrier via SEM.

carrier via SEM.

3.5. Fourier transform infrared spectroscopy (FTIR).

Drug—excipient compatibility studies were done via FTIR. CIP-HCI spectrum showed
peaks at 3369.5-3481.3 cm™, 2691.1 and 2901.1 cm?, 1636.3 cm™, 1476 cm™, 1200-1282
cm™, 1017.6-1043 cm?, depicting O-H stretch, C—H stretch, N-H bend, C-O Bend, O-H
bend, and C-F stretch respectively. Our findings were similar to other research reports
[37,38]. The FTIR spectra of Neusilin and dextrin-based formulations were similar to the
spectrum of ciprofloxacin; however, an additional peak was seen at 1738.9 and 1736.9 cm™,
respectively, suggesting C=0 Stretch (Table 6, Figures 6 and 7). The blank proniosomal
preparation without CIP-HCI showed broader O—H peaks than drug-loaded formulations.
This pattern was more obvious with the dextrin—based formulation without the drug. This
could be linked to the reported presence of the OH group on the dextrin (refer to Figure 1)
[39]. Nevertheless, Neusilin powder doesn’t possess an OH functional group [40]. Generally,
hydrogen bonding interactions occur between the proniosomal components and the drug. This
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pattern was consistent with other research reports [30,41]. According to the FTIR studies, no
undesirable interactions were detected between the drug and excipients.

Table 6. FTIR of ciprofloxacin HCI and proniosomal formulations.
Dextrin-based proniosomal Neusilin®-based proniosomal

CIP-HCI formulations formulations

Absorption band Functional Absorption band Functional Absorption band Functional
(cm 1) group (cm 1) group (cm 1) group
3369.5and 3481.3  O-H Stretch 3399.3 O-H Stretch 3339.3 O-H Stretch
| 2691.1and 2901.1 [ C-H Stretch | 2806.3 and 2929.7 [ C-H Stretch | 2929.7 | C-HStretch |
1636.3 N-H Bend 1736.9 C=0 Stretch 1738.9 C=0 Stretch
| 1476 | -OBend | 1636.3 | N-HBend | 1636.3 | N-HBend |
1200 - 1282 O-H bend 1461.1 C-O Bend 1423.8 C-O Bend
| | | 1244.9and 12822 | O-Hbend | | |
1017.6 - 1043 C—F Stretch 1020 -1107 C_F Stretch 1084.7 C—F Stretch
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Figure 6. FTIR of (a) Ciprofloxacin hydrochloride; (b) dextrin-based proniosomal formulation loaded
with ciprofloxacin hydrochloride; (c) dextrin-based proniosomal formulation loaded without ciprofloxacin
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Figure 7. FTIR of (a) Neusilin-based proniosomal formulation loaded with ciprofloxacin hydrochloride; (b)
Neusilin-based proniosomal formulation loaded without ciprofloxacin hydrochloride.

3.6. In vitro drug release of ciprofloxacin proniosomal formulation.

The pH-dependent drug release from the encapsulated ciprofloxacin proniosomes was
evaluated at pH values of 1.2 (for 2h), 6.8 (for 3h), and 7.4, simulating the stomach, small
intestine, and colon, respectively. In the first 2 h in pH 1.2, drug release for both formulations
was less than 1%, the next 3 hrs in pH 6.8, drug release was less than 5% and 4% for Neusilin
and dextrin-based formulations, respectively (Figure 8). Higher drug release was seen in pH
7.4 from the 6™ h to the 10" h. At the end of the 10" hour, drug release was 30.92% and
37.01% for Neusilin and dextrin-based proniosomal formulations, respectively. An in vitro
dissolution study was conducted to understand the in vitro drug release profile of the
proniosomal formulations encapsulated in Eudragit FS 30D-coated capsules. Eudragit® FS
30D is a poly(meth) acrylate-based copolymer with gastro-resistant properties. They are
insoluble at low pH but become more soluble at high pH [42]. This formulation was intended
to avoid the release of the drug in the gastric and upper intestinal region but to release the
drug slowly in the lower part of the intestine, maximizing drug concentration in the colon in
the treatment of IBD. The results showed the resistance feature of Eudragit® FS 30D coated
capsules in pH 1.2 and 6.8 media, as negligible releases were seen. However, higher release
was obtained in the colonic (pH 7.4) medium because Eudragit® FS 30D is a pH-dependent
polymer that dissolves in an environment above pH 7.0 [43]. Summarily, the dextrin-based
formulation showed a higher drug release than the Neusilin counterpart due to the solubility
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of dextrin in an aqueous medium [44]. The lower drug release seen in Neusilin-based
formulations may be due to the poor water solubility of Neusilin and, consequently, low
desorption from its matrix, giving rise to lower drug release.

40 -
35 4
30 -
25
20

15 A

% cummulative drug release

10 -

0 2 4 6 8 10 12
Time (hours)

—4—Neusilin- based formulation ~@—Dextrin - based formulation

Figure 8. In vitro drug release of Neusilin and dextrin—based proniosomal formulations encapsulated in
Eudragit FS 30D coated capsules.

4. Conclusions

Ciprofloxacin-loaded proniosomes formulations were successfully prepared by the
slurry method with two carriers and various surfactant-to-cholesterol ratios. The formulated
proniosomes possessed good in vitro characteristics, which include good flow properties,
high entrapment efficiency (>80 %), smooth surface, and nano-sized particles. The Eudragit
FS 30D coated capsules (containing ciprofloxacin proniosomes) showed negligible release in
pH 1.2 and 6.8, but higher drug release occurred in pH 7.4, suggesting that colon-targeted
release was achieved. The Eudragit® FS 30D coated capsules containing ciprofloxacin
proniosome are a promising approach to sustain the release of ciprofloxacin, an antibiotic, for
an extended period in the colon for the improved management of IBD. This study focused
only on the in vitro characteristics of the colon-targeted ciprofloxacin vesicular system. The
interesting results obtained in this study will guide further investigations on the effectiveness
of this formulation on in vivo and ex vivo models.
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