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Abstract: Some reports indicate that chalcone derivatives have activity on the cardiovascular system; 

nevertheless, there is scarce information about the effects produced by chalcone derivatives against both 

perfusion pressure and left ventricular pressure. This research used an isolated rat heart model to 

synthesize a new chalcone-steroid derivative to evaluate its biological activity on perfusion or left 

ventricular pressure. Besides, the molecular mechanism involved in the effect induced by chalcone 

derivative on left ventricular pressure was determined using some drugs such as metoprolol, prazosin, 

indomethacin, and nifedipine as pharmacological tools. The results showed that chalcone derivative 

significantly (p = 0.05) increased the perfusion pressure compared to chalcone, pregnenolone, and the 

control conditions. Other data indicate that chalcone derivatives increase left ventricular pressure in a 

dose-dependent manner, and this effect is inhibited in the presence of nifedipine. This phenomenon 

suggests that the molecular mechanism involved in the biological activity produced by chalcone-steroid 

derivative on left ventricular pressure is through Type-L calcium channel activation. These data suggest 

that this chalcone derivative could be an excellent inotropic agent for treating heart failure. 
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1. Introduction 

For several years,  some chalcone derivatives have been used to treat different types of 

diseases, such as viral, infectious, antimalarial, pain, diabetes, cancer, cardiovascular, and lung 

injury [1-13]. For example, a study showed that a chalcone derivative (liquorice) had been 

involved in treating gastric ulcers and bronchial asthma [14]. In addition, a study showed that 

bavachalcone (a prenylated chalcone) reduces the growth of cancer cells by modulating the 

https://nanobioletters.com/
https://doi.org/10.33263/LIANBS143.117
mailto:rosasnm@yahoo.com
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7119-4728
https://orcid.org/0000-0001-8056-9069
https://orcid.org/0000-0003-4613-9836
https://orcid.org/0000-0003-0046-4342
https://orcid.org/0000-0002-9085-2631
https://orcid.org/0000-0002-1456-0549
https://orcid.org/0000-0003-3283-0001
https://orcid.org/0000-0002-3174-4112


https://doi.org/10.33263/LIANBS143.117 

 https://nanobioletters.com/ 2 of 13 

 

biological activity of retinoic acid-related orphan-α receptors [15]. Other data indicate that 

butein (a chalcone derivative) is beneficial in treating pain, gastritis, and parasitic infections 

[16]. In addition, a report shows that butein can inhibit heart injury caused by oxidative stress 

using a chronic heart failure model [17].  

On the other hand, a study showed that 2-(2-dimethylaminoethoxy) chalcone citrate 

reduces blood pressure in an unanesthetized hypertensive rat model [18]. Furthermore, other 

data indicate that chalcone R-2803 (2-(2-dimethylaminoethoxy)-3’, 4’, 5’-trimethoxychalcone) 

inhibits increased norepinephrine-induced aortic muscle contractions in dogs [19]. Different 

studies show that administration of a chalcone derivative (4-hydroxydericine) can decrease 

systolic blood pressure, serum very low-density lipoprotein levels, and hepatic triglyceride 

concentration using a stroke-prone spontaneously hypertensive rat model [20]. Other data 

indicate that xanthoangelol (a chalcone analog) has beneficial effects on lipid metabolism in 

stroke-prone spontaneously hypertensive rats [21]. Another report indicates that chalcone 

L6H9 ((e)-2,6-Difluoro-4'-methoxychalcone) can protect cardiomyocytes from 

hyperglycemia-induced injury through both ROS (reactive oxygen species) and NF-κB 

(nuclear factor-kappa B) inhibition [22]. Other data showed that a resveratrol-chalcone 

derivative protects mice against diabetic cardiomyopathy by alleviating inflammation and 

oxidative stress via B NF-κB inhibition and Nrf2 activation [23]. All these data show that 

chalcone derivatives can affect the cardiovascular system; however, the biological activity of 

both perfusion and left ventricular pressure is unclear. Analyzing these data, this investigation 

aimed to evaluate the biological activity produced by chalcone-steroid derivative on either 

perfusion or left ventricular pressure using an isolated rat heart model. To characterize the 

molecular mechanism involved in the biological activity of chalcone derivatives on left 

ventricular pressure, some drugs such as metoprolol, prazosin, indomethacin, and nifedipine 

were used as pharmacological tools. Furthermore, a theoretical coupling model determined the 

interaction of chalcone derivatives with some molecules involved in left ventricular pressure 

changes. 

2. Materials and Methods 

2.1. General methods of chemical synthesis. 

All reagents used in this investigation were acquired from Sigma-Aldrich suppliers. 

Using tetramethylsilane as an internal standard, the NMR spectrum was determined with a 

Varian VXR300/5 FT (300 MHz/CDCl3) apparatus. The infrared (IR) spectrum was 

determined on an iSOFT/IR Thermo Scientific device. The melting point (m.p.) was 

determined in a mode electrothermal-900 apparatus. Elemental analysis was determined using 

a Perkin-Elmer apparatus (Ser. II CHNS/02400). 

2.2. Chemical synthesis. 

2.2.1. 2-Amino-3-methyl-pentanoic acid 17-acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13, 

14,15,16, 17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl ester (2). 

In a round-bottom flask (10 mL), pregnenolone (100 mg, 0.32 mmol), isoleucine (80 

mg, 0.61 mmol), N, N′-Dicyclohexylcarbodiimide (300 mg, 1.45 mmol), and 6 mL of a 

methanol/ethanol system (2:1 ) were stirred for 72 h at room temperature. Then, the solvent 
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was evaporated on a rotary evaporator, and the product was separated using the chloroform: 

water (4:1) system.  

2.2.2. 2-(1,3-Diphenyl-allylideneamino)-3-methyl-pentanoic acid 17-acetyl-10,13-dimethyl-

2,3,4,7,8,9,10, 11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl ester (3). 

In a round-bottom flask (10 mL), compound 2 (100 mg, 0.23 mmol), chalcone (50 mg, 

0.24 mmol), boric acid (30 mg, 0.48 mmol), and 5 mL of methanol were stirred for 72 h at 

room temperature. Then, the solvent was evaporated on a rotary evaporator, and the product 

was separated using the chloroform: water (2:1) system. 

2.3. Biological activity. 

2.3.1. General methodology. 

All experimental procedures and protocols used in this investigation were in accordance 

with the Guide for the Care and Use of Laboratory Animals (Washington, DC: National 

Academy Press, 1996) [24]. 

2.3.2. Animals. 

Wistar, weighing 200-250 g (n = 64), was obtained from the Laboratory of 

Pharmacochemistry Research of the University Autonomous of Campeche. 

2.3.3. Reagents. 

The chalcone derivative and other compounds were dissolved in methanol, and 

dilutions were made from this solution by adding *Krebs-Henseleit solution (v/v).  

*Krebs-Henseleit solution was prepared using a previous technique reported [25]. 

2.3.4. Anesthesia. 

Pentobarbital (50 mg/kg) was administered intraperitoneally to induce anesthesia in 

rats. Then, the chest was opened, and a loose ligature was passed through the ascending aorta. 

Following, the heart was removed, and a cannula was inserted. In addition, the cannula was 

connected to an acrylic chamber, which in turn was bound to a Graham condenser through 

which the heart was retrogradely perfused with Krebs-Henseleit solution* at a constant flow 

rate (10 mL/min). 

2.3.5. Perfusion pressure evaluation. 

The recording of the biological activity produced by pregnenolone, chalcone, and 

chalcone-steroid derivative on the perfusion pressure was determined using a pressure 

transducer connected to the chamber where the hearts were mounted. Data were entered into a 

computerized data capture system (Biopac). 

2.3.6. Experimental design 1. 

The changes in the perfusion pressure as a consequence of the increase in time (3-18 

min) in the absence or in the presence of the pregnenolone, chalcone, and chalcone-steroid 

derivative were evaluated using the following experimental design (Table 1): 
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Table 1. Experimental design for evaluating biological activity produced by chalcone, pregnenolone, and 

chalcone-steroid derivative on the perfusion pressure. 

Group Compound Dose 

I Control Krebs-Henseleit solution only 

II Chalcone 0.001 nM 

III Pregnenolone 0.001 nM 

IV Chalcone derivative 0.001 nM 

It is noteworthy that the effects were determined in isolated hearts perfused (n = 6) for 

each group at a constant flow rate of 10 mL/min. In addition, doses administered were based 

on previously reported methods for other types of compounds, which exert changes in the 

perfusion pressure [26]. 

2.3.6. Inotropic activity. 

The contractile activity was evaluated by measuring left ventricular developed pressure 

(LVP) using a saline-filled latex balloon (0.01 mm diameter) inserted into the left ventricle via 

the left atrium. Notably, the latex balloon was connected to the cannula, which was bound to a 

pressure transducer connected to an MP100 data acquisition system. 

2.3.7. Experimental design 2. 

2.3.7.1. Effects produced by chalcone derivative (CPI) on left ventricular pressure through 

adrenergic receptors. 

Intracoronary boluses (50 μL) of chalcone derivative [0.001 to 100 nM] were 

administered, and the corresponding effect on the left ventricular pressure was determined. The 

dose-response curve (control) was repeated in the presence of either prazosin or metoprolol at 

a concentration of 1 nM (duration of preincubation with either prazosin or metoprolol was a 10 

min equilibration period). 

2.3.7.2. Biological activity exerted by chalcone-steroid derivative (CPI) on left ventricular 

pressure through the prostaglandins system.  

Intracoronary boluses (50 μL) of chalcone-steroid derivative [0.001 to 100 nM] were 

administered, and the corresponding effect on the left ventricular pressure was determined. The 

dose-response curve (control) was repeated in the presence of indomethacin at a concentration 

of 1 nM (duration of preincubation with indomethacin was a 10-minute equilibration period). 

2.3.7.3. Effects induced by chalcone-steroid derivative (CPI) on left ventricular pressure 

through calcium channel activation.  

Intracoronary boluses (50 μL) of chalcone-steroid derivative [0.001 to 100 nM] were 

administered, and the corresponding effect on the left ventricular pressure was determined. The 

dose-response curve (control) was repeated in the presence of nifedipine at a concentration of 

1 nM (duration of preincubation with nifedipine was a 10-minute equilibration period). 

2.3.8. Docking. 

The interaction of chalcone derivatives with the calcium channel surface was 

determined using 6jp5 protein (https://doi.org/10.2210/pdb6JP5/pdb) as a theoretical model. In 

addition, the binding energy involved in the interaction of the chalcone-steroid derivative with 
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the 6jp5 protein surface (https://doi.org/10.2210/pdb6JP5/pdb) was evaluated using 

DockingServer software [27]. 

3. Results and Discussion 

In the literature, several studies indicate that some chalcone derivatives can produce 

changes in the cardiovascular system [18-23]; however, the interaction of chalcone derivatives 

with some biomolecules is not very clear. Analyzing these data, this study aimed to synthesize 

a chalcone derivative to evaluate the biological activity exerted on both perfusion pressure and 

left ventricular pressure as follows: 

3.1. Preparation of steroid-amino acid derivative. 

Figure 1 shows the synthesis of compound 2 from pregnenolone and isoleucine in the 

presence of N, N′-dicyclohexylcarbodiimide; the results showed a 65% yield for 2. Other data 

for the infrared spectrum (Vmax, cm-1) displayed some bands at 3380 for the amino group, 

1765 for the ester group, and 1712 for the ketone group. The 1H NMR spectrum from 

compound 2 showed some signals at 7.64 ppm for deuterated chloroform (CDCl3), at 5.28 ppm 

for alkene (Ring-B, steroid nucleus), at 4.78 ppm for methylene group bound to both ketone 

and methyl groups; at 3.01 ppm for amino group; at 2.00 ppm for methyl group linked to ketone 

group; at 1.65 ppm for methyl group bound to Ring-A of steroid nucleus; at 1.22 and 0.70 ppm 

for methyl groups linked to arm spacer; at 1.65 ppm for methyl group bound to Ring-B of 

steroid nucleus. The 13C NMR spectra display chemical shifts at 209.26 ppm for the ketone 

group, 170.09 ppm for the ester group, 130.68-128.50 ppm for the alkene group, and 77.91 

ppm for deuterated chloroform (CDCl3), at 40.09 ppm for methyl group (Ring A, steroid 

nucleus); at 33.92 and 24.94 ppm for methyl groups bound to arm spacer; at 13.47 ppm for 

methyl group linked to Ring-C of steroid nucleus. In addition, mz/ion spectra showed 429.26. 

O
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O

O

NH2

i

ii
1

2

3  
Figure 1. Synthesis of Chalcone derivative. Conditions and catalysts: i = N, N′-dicyclohexylcarbodiimide, 

MeOH/EtOH, room temperature. ii = boric acid, MeOH, room temperature. 

3.2. Synthesis of chalcone-steroid derivative. 

Compound 3 (Figure 1) was prepared from 2 and chalcone in the presence of boric acid; 

the results showed a 58% yield for 3. Other data for the infrared spectrum (Vmax, cm-1) 

displayed some bands at 3322 for the imino group, 1762 for the ester group, and 1715 for the 

ketone group. The 1H NMR spectrum displayed several signals at 7.22 ppm for deuterated 
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chloroform (CDCl3), at 7.17 and 6.55 ppm for the alkene group, at 5.22 ppm for methylene 

group bound to ester group, at 2.01 ppm for methyl group linked to ketone group; at 0.90 ppm 

for methyl group linked to arm spacer; at 1.15 and 0.52 ppm for methyl groups bound to steroid 

nucleus. Besides, The 13C NMR spectra showed several bands for 3 at 208.75 for the ketone 

group, at 157.50 for the imino group, at 141.24 and 133.30 ppm for the alkene group, at 33.66 

ppm for the methyl group bound to ketone group; at 24.05 and 25.30 ppm for methyl groups 

linked to steroid nucleus; at 18.95 and 13.38 ppm for methyl group linked to arm spacer. In 

addition, mz/ion spectra showed 619.30 

3.3. Biological activity. 

Several reports have shown that some chalcone derivatives can exert biological activity 

on the cardiovascular system as vasorelaxants [28], antihypertensives [29], and induce 

beneficial effects on myocardial infarction [30]; however, the molecular mechanism is not very 

clear. Analyzing these data, this study evaluated the biological activity of a chalcone derivative 

on perfusion pressure using an isolated rat heart model. The results indicate that chalcone 

derivative significantly increases the perfusion pressure (p = 0.05) compared to pregnenolone, 

chalcone, and the control conditions (Figure 2); this phenomenon could be due to differences 

in the chemical structure of each compound. 
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Figure 2. The effect produced by chalcone-steroid derivative (CPI) on perfusion pressure. The results showed 

that CPI significantly increased the perfusion pressure (p = 0.05) through time (3 to 21 min) compared with 

pregnenolone, chalcone, and the control conditions (only Krebs-Hensseleit solution). The biological activity is 

expressed as the area under the curve, and each bar represents the mean ± S.E. of 6 experiments. 

Analyzing these data and other reports suggests that chalcone R-2803 (2-(2-

dimethylaminoethoxy)-3',4',5'-trimethoxychalcone) may produce changes in the adrenergic 

system by decreasing aortic muscle contractions in dogs [18]. For this reason, in this study, the 

biological activity of chalcone derivatives on left ventricular pressure was evaluated in the 
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absence or presence of either metoprolol (β1-adrenergic receptor inhibitor) [31,32] or prazosin 

(α1-adrenergic receptor blocker) [32,34].  

The results (Figure 3) showed that chalcone derivative significantly (p = 0.05) increases 

left ventricular pressure in a dose-dependent manner (0.001 to 100 nM), and this effect was not 

inhibited in the presence of either metoprolol or prazosin (1 nM). These data indicate that the 

molecular mechanism involved in the biological activity exerted by chalcone derivative on left 

ventricular pressure was not through adrenergic system activation. 
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Figure 3. Chalcone-steroid derivative (CPI) exerts biological activity on left ventricular pressure through the 

adrenergic system. Intracoronary boluses (50 μL) of CPI (0.001 to 100 nM) were administered, and the 

corresponding effect on the left ventricular pressure was evaluated in the absence and presence of either 

metoprolol or prazosin at a dose of 1 nM. The results showed that activity induced by CPI on left ventricular 

pressure was not inhibited in the presence of either metoprolol or prazosin. The effects are expressed as the area 

under the curve, and each bar represents the mean ± S.E. of 6 experiments. 

Analyzing these data and other data indicates that some chalcone can produce activity 

biological on prostaglandins system; for example, a study displayed that a chalcone derivative 

(N’-(2-{4-[(2E)-3-(4-Methoxyphenyl)prop-2-enoyl]phenoxy}acetoxy)-4-methoxybenzene-

carboximidamide) exert changes in the prostaglandins system through cyclooxygenase enzyme 

inhibition [35]. Besides, a report indicates that chalcone SU-88 (2′-carboxymethoxy-4,4′-bis(3-

methyl-2-butenyloxy)chalcone) induces effects on the prostaglandin system through 15-

hydroxy-PG-dehydrogenase inhibition [36]. For this reason, in this research, the biological 

activity produced by chalcone derivative on left ventricular pressure in the absence or presence 

of indomethacin (cyclooxygenase enzyme inhibitor) [37,38] was evaluated. The results showed 

that the effect exerted by chalcone derivative on left ventricular pressure was not inhibited by 

indomethacin; these data showed that the molecular mechanism involved in the effect exerted 

by chalcone derivative on left ventricular pressure was not via the prostaglandins system 

activation. In the search for the molecular mechanism involved in the effect exerted by 

chalcone derivatives on left ventricular pressure, some reports were also analyzed, indicating 
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that some chalcone derivatives may influence calcium channels; this phenomenon could be 

translated as changes in blood pressure [39]. For example, one study showed that a chalcone 

derivative (1-(2,5-Dihydroxy-phenyl)-3-thiophen-2-yl-propenone) decreases the contractile 

response through calcium channels inhibition using a rat thoracic aorta model [40]. Analyzing 

these data, this investigation evaluated the biological activity exerted by chalcone derivative 

on left ventricular pressure in the absence or presence of nifedipine (Type-L calcium channels 

blocker) [41,42]. The results (Figure 4) showed that the effect produced by chalcone derivative 

on left ventricular pressure was inhibited in the presence of nifedipine at a dose of 1 nM, 

indicating that the biological activity exerted by chalcone derivative on left ventricular pressure 

was through Type-L calcium channels inhibition.  
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Figure 4. The effect produced by chalcone-steroid derivative (CPI) on left ventricular pressure is through either 

prostaglandin release or calcium channel activation. Intracoronary boluses (50 μL) of CPI (0.001 to 100 nM) 

were administered, and the corresponding effect on the left ventricular pressure was determined in the absence 

and presence of either indomethacin or nifedipine at a dose of 1 nM. The results showed that activity induced by 

CPI on perfusion pressure was not inhibited in the presence of indomethacin. However, this effect was blocked 

by nifedipine. The effect is expressed as the area under the curve, and each bar represents the mean ± S.E. of 6 

experiments. 

However, to characterize the interaction of chalcone derivatives with the calcium 

channel, some studies were carried out using the 6jp5 protein, nifedipine, as a theoretical tool 

in a Docking model. 

3.4. Docking analysis. 

For several years, some methods have been used, such as SwissDock [43], PharmDock 

[44], Autodock [45], and the DockingServer program [46]. This research determined the 

theoretical interaction of chalcone derivatives with 6jp5 protein surface using nifedipine, 

amlodipine, darodipine, ML-218, and Bay K-8644 as theoretical tools in DockingServer 

software. The results (Table 2) showed that the interaction of the chalcone derivative with the 
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surface of the 6jp5 protein involves different types of amino acid residues compared with other 

compounds. However, the amino acid residue Ile1244 involved in the formation of the chalcone-

protein complex could be responsible for the biological activity of the chalcone derivative on 

the calcium channel.  

Table 2. Amino acid residues involved in theoretical interaction of nifedipine, amlodipine, darodipine, ML-218, 

Bay K-8644 and chalcone derivative (CIP) with 6jp5 protein surface. 
Compound Aminoacid residues 

Nifedipine Pro1181; Trp1182; Leu1247; Arg1254; Leu1257; Trp1258; Ile1261 

Amlodipine Pro1181; Trp1182; Arg1254; Trp1258; Ile1261 

Darodipine Pro1181; Trp1182; Leu1247; Arg1254; Leu1257; Trp1258; Ile1261 

ML-218 Pro1181; Trp1182; Val1184; Phe1185; Arg1254; Trp1258; Ile1261 

Bay K-8644 Pro1181; Trp1182; Leu1247; Arg1254; Leu1257; Trp1258; Ile1261 

CIP Pro1181; Trp1182; Phe1185; Ile1244; Leu1247; Arg1254; Leu1257; Trp1258; Ile1261 

However, some reports suggest that the interaction of some drugs with different 

proteins or enzymes could depend on some thermodynamic parameters, such as free binding 

energies, solvation energies, and the inhibition constant (Ki) [47]. Analyzing these data in this 

investigation determined some thermodynamic factors involved in the interaction of chalcone 

derivative with the 6jp5 protein surface. The results (Table 3) showed differences in energy 

values for chalcone derivative compared with nifedipine (L-type calcium channel blocker) 

[41,42], amlodipine (L-type calcium channel inhibitor) [48], darodipine (calcium channel 

blocker) [49], ML-218 (T-type calcium channel agonist [50, 51] and Bay- K8644 (L-type 

calcium channel agonist) [52]. Another result showed that Ki was lower for chalcone 

derivatives than nifedipine, amlodipine, darodipine, ML-218, and Bay- K8644; this data 

indicates that chalcone derivatives could act as calcium channel inhibitors. 

Table 3. Thermodynamic parameters involved in the interaction of nifedipine, amlodipine, darodipine, ML-218, 

Bay K-8644, and chalcone derivative (CIP) with 6jp5 protein surface using DockingServer software. 

Compound A B C D E F 

Nifedipine -4.93 245 -6.35 -0.10 -6.45 617.62 

Amlodipine -4.44 554.93 -5.19 0.28 -4.91 613.98 

Darodipine -4.18 866.09 -6.82 -0.02 -5.84 597.83 

ML218 -6.50 93.62 -7.06 0.15 -6.90 664.25 

Bay K8644 -5.07 193.07 -6.43 -0.03 -6.46 572.70 

CPI -7.99 1.39 -9.49 -0.06 -9.55 868.36 

A = Est: Free Energy of Binding (kcal/mol); B = Inhibition Constant, Ki (mM); C = vdW + Hbond + desolv 

Energy (kcal/mol); D = Electrostatic Energy (kcal/mol); E = Total Intermolec. Energy (kcal/mol); F = Interact. 

Surface. 

4. Conclusions 

The results showed that the chalcone derivative increases both the perfusion and left 

ventricular pressure, which is associated with type-L calcium channel activation. Besides, the 

theoretical analysis suggests that the interaction of the chalcone derivative with the calcium 

channel could involve a series of amino acid residues for their biological activity on both the 

perfusion and left ventricular pressure. All these data suggest that this chalcone derivative 

could be an excellent inotropic agent to treat heart failure. 
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