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Abstract: Germanium, tin/silicon-based nanoparticles are used as excipients in pharmaceutical 

technology. Recently, silicon/germanium oxide has emerged as a drug delivery system. Therefore, in 

this article, the promising alternative alkali metals of sodium-ion and potassium-ion delivery are 

discussed. This paper reports the presence of human cells of an additional ouabain-insensitive transport 

pathway for Li+–Na+ and Li+–K+ ions cotransport. A comprehensive investigation on (GeSiO2)Li+Na+, 

(GeSiO2)Li+K+, (SnSiO2)Li+Na+, and (SnSiO2)Li+K+ was carried out including using density functional 

theory (DFT) computations at the coulomb-attenuating method/Becke, 3-parameter, Lee–Yang–Parr 

[CAM–B3LYP–D3/6-311+G (d,p)] level of theory. The hypothesis of the ion-transporting phenomenon 

was confirmed by density distributions of charge density differences (CDD), total density of states 

(TDOS), and localized orbital locator (LOL) for nanoclusters of (GeSiO2)Li+Na+, (GeSiO2)Li+K+, 

(SnSiO2)Li+Na+, and (SnSiO2)Li+K+. The fluctuation in charge density values demonstrates that the 

electronic densities were mainly located at the boundary of adsorbate/adsorbent atoms during the 

adsorption status. The values detect that with adding lithium, sodium and potassium, the negative 

atomic charge of oxygen atoms of O2, O3, O7–O12, O14, O15, O17, O18, O22–O27, O29, O30 in 

(GeSiO2)Li+Na+, (GeSiO2)Li+K+, (SnSiO2)Li+Na+, and (SnSiO2)Li+K+ nanoclusters augments as the 

advantages of lithium, sodium, or potassium over Ge, Sn/Si, they possess its higher electron and hole 

motion, allowing lithium, sodium or potassium instruments to operate at higher frequencies than Ge, 

Sn/Si instruments. Among these, sodium-ion transfer seems to show the most promise in terms of initial 

capacity. In fact, the counter map of LOL can confirm that (GeSiO2)Li+Na+, (GeSiO2)Li+K+, 

(SnSiO2)Li+Na+, and (SnSiO2)Li+K+  nanoclusters may increase the efficiency during ion transporting. 

This ion transport can create and maintain an electrochemical gradient, which is crucial for various 

cellular processes, including cell volume regulation, electrical excitability, and secondary active 

transport. The current study wants to delve deeper into several aspects of this molecular entity, such as 

describing its structure and mode of operation in atomic detail, understanding its molecular and 

functional diversity, and examining the consequences of its malfunction due to structural alterations. 
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1. Introduction 

While prominently represented in the environment, lithium ions are not essential 

cofactors in biological systems [1–3]. In contrast, sodium, potassium, calcium, and magnesium 

are essential cofactors in multiple biological systems, and others, such as iron, zinc, and copper, 

play a role in some specific systems [4–7]. Thus, lithium ions appear to have been isolated 

from being incorporated as an essential element during the evolution of increasingly complex 

biological systems [8–13].  

Irrespective of those who discovered Li salt’s effects on patients with bipolar disorder, 

its use in these conditions became the standard for decades and continues today. In the 

treatment of bipolar disorder patients with lithium salts, it has been noted that not all patients 

are responsive to therapeutic doses of this intervention [14–23].  

The nanomaterials, however, are widely applied in photocatalysis, energy, sensing, 

water purification, biomedicine, and electronics, with further material engineering for other 

future applications [24–28]. In fact, these are semiconductors in which the pure state of the 

semiconductor material is deliberately diluted by adding some quantities of impurities. By so 

doing, their conductivity and properties are improved as compared to the intrinsic 

semiconductors. 

As the effect of Li salt utilization as a replacement for NaCl was an obvious failure, its 

successful usage in the remedy of bipolar disorder in patients was a stimulus from several 

outlooks for a more detailed research of Li salt’s impacts on other biological systems, with the 

emergence of a better understanding of its broad significance in biology and its functions as a 

modulator or regulator of biological systems. It performs a very critical task in monitoring 

alterations in the system entirely owing to genetics or biological heterogeneity in humans [29–

34]. 

Currently, the present research aims to explore the possibility of using GeSiO2 and 

SnSiO2
 nanocages for ion transport of Li+Na+ and Li+K+ by employing first-principles 

calculations. We have analyzed the structural and electronic properties of (GeSiO2)Li+Na+, 

(GeSiO2)Li+K+, (SnSiO2)Li+Na+, and (SnSiO2)Li+K+ nanoclusters using state-of-the-art 

computational techniques.  

2. Materials and Methods 

Semiconductors are solid substances that are neither good conductors of metals nor 

insulators of glass, but have a crystalline structure and contain very few free electrons at room 

temperature. They have resistivities and energy gaps that lie between the conductors and 

insulators. The aim of this study is to transport alkali metal ions of Li+, Na+, K+ by (GeSiO2) 

and (SnSiO2) nanocages towards the formation of (GeSiO2)Li+Na+, (GeSiO2)Li+K+, 

(SnSiO2)Li+Na+, and (SnSiO2)Li+K+ (Figure 1), which can increase the ion transfer in human 

cells. The Bader charge analysis [35] was discussed during ion transporting through the 

formation of (GeSiO2)Li+Na+, (GeSiO2)Li+K+, (SnSiO2)Li+Na+, and (SnSiO2)Li+K+ 

nanoclusters (Figure 1). The rigid potential energy surface using density functional theory [36–

38] was performed due to the Gaussian 16 revision C.01 program package [39] and GaussView 

6.1 [40]. The coordination input for ion transporting by (GeSiO2)Li+Na+, (GeSiO2)Li+K+, 

(SnSiO2)Li+Na+, and (SnSiO2)Li+K+ has been LANL2DZ and 6-311+G (d,p) basis sets.  
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Figure 1. Ion Transport of Li+, Na+, K+ across the cell membrane by (GeO–SiO) and (SnO–SiO) nanocages 

through formation of (GeSiO2)Li+Na+, (GeSiO2)Li+K+, (SnSiO2)Li+Na+, (SnSiO2)Li+K+ nanoclusters. 

In our research, the calculations have been done by CAM–B3LYP–D3 /EPR–3 level of 

theory. The exact exchange energy functional is expressed in terms of the Kohn–Sham orbitals 

rather than the density, so it is termed an implicit density functional. One of the most commonly 

used versions is B3LYP, which stands for "Becke, 3-parameter, Lee–Yang–Parr" [41–43]. It 

was demonstrated that CAM-B3LYP yields saving energies of similar quality to those from 

B3LYP, while also performing well for charge transfer in a simulated model, which B3LYP 

underestimates enormously.  

3. Results and Discussion 

3.1. Charge density differences analysis. 

The amounts of charge density differences (CDD) are measured by considering isolated 

atoms or noninteracting ones. The mentioned approximation can be the lightest to use because 

the superposition value may be received from the primary status of the self-consistency cycle 

in the code that carries out the density functional theory (Figure 2a, b, c, d) [44].  

In Figure 2a, the (GeSiO2)Li+Na+ cluster with the fluctuation in the region around -12 

to +8 Bohr has been formed. Furthermore, the atoms of O2, O3, O7–O12, O14, O15, O17, O18, 

O22–O27, O29, O30 from (GeSiO2)Li+K+ (Figure 2b) have shown the fluctuation around -12 to 

+8 Bohr. In addition, the (SnSiO2)Li+Na+ cluster with the fluctuation in the region around -12 

to +8 Bohr (Figure 2c) has been observed. Besides, (SnSiO2)Li+K+ cluster with the fluctuation 

in the region around -12 to +8 Bohr (Figure 2d) has been seen. 

Atomic charge was discussed during ion transferring through the formation of 

(GeSiO2)Li+Na+, (GeSiO2)Li+K+, (SnSiO2)Li+Na+, and (SnSiO2)Li+K+ nanoclusters, 

respectively (Tables 1 and 2). The atomic charge of Si, Ge, Sn, O, and alkali metals of Li+, 

Na+, and K+ transferred by (GeSiO2) and (SnSiO2)
 nanocages has been measured. The values 

detect that with adding lithium, sodium and potassium, the negative atomic charge of oxygen 

atoms of O2, O3, O7–O12, O14, O15, O17, O18, O22–O27, O29, O30 in (GeSiO2)Li+Na+, 

(GeSiO2)Li+K+, (SnSiO2)Li+Na+, and (SnSiO2)Li+K+ nanoclusters augments. In fact, 

(GeSiO2)Li+Na+, (GeSiO2)Li+K+, (SnSiO2)Li+Na+, and (SnSiO2)Li+K+ nanoclusters have 

https://doi.org/10.33263/LIANBS143.125
https://nanobioletters.com/


https://doi.org/10.33263/LIANBS143.125  

 https://nanobioletters.com/ 4 of 13 

 

shown more efficiency than (GeSiO2) or (SnSiO2) clusters [30] for admitting the electron from 

electron donors of H33, H34, H35, and H36 (Tables 1 and 2). 

  

  
Figure 2. CDD graphs for (a) (GeSiO2)Li+Na+; (b) (GeSiO2)Li+K+; (c) (SnSiO2)Li+Na+; (d) (SnSiO2)Li+K+ 

nanoclusters. 

Table 1. The atomic charge (Q/coulomb) for (GeSiO2)Li+Na+ and (GeSiO2)Li+K+ nanoclusters. 

(GeSiO2)Li+Na+ (GeSiO2)Li+K+ 

Atom Charge Atom Charge 

Si1 1.4620 Si1 1.4633 

O2 –0.6577 O2 –0.6895 

O3 –0.8351 O3 –0.8312 

Si4 1.4288 Si4 1.4350 

Si5 1.4499 Si5 1.46125 

Si6 1.4581 Si6 1.4527 

O7 –0.6825 O7 –0.6538 

O8 –0.8429 O8 –0.8314 

O9 –0.7903 O9 –0.7904 

O10 –0.9988 O10 –1.0624 

O11 –0.8024 O11 –0.8008 

O12 –0.9533 O12 –0.9442 

Si13 1.6394 Si13 1.6057 

O14 –0.7323 O14 –0.7090 

O15 –0.7257 O15 –0.7616 

Ge16 1.4154 Ge16 1.3891 

O17 –0.6523 O17 –0.6690 

O18 –0.7795 O18 –0.7814 

Ge19 1.4002 Ge19 1.3802 

Ge20 1.3932 Ge20 1.3892 

Ge21 1.4036 Ge21 1.3897 

O22 –0.6668 O22 –0.6228 

O23 –0.7840 O23 –0.7872 

O24 –0.9600 O24 –1.0065 

O25 –0.7804 O25 –0.7947 

O26 –0.9081 O26 –0.9177 

O27 –0.7872 O27 –0.7596 

Ge28 1.2894 Ge28 1.2323 

O29 –0.7393 O29 –0.7043 

O30 –0.7193 O30 –0.7305 

Li31 0.7412 Li31 0.7317 
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(GeSiO2)Li+Na+ (GeSiO2)Li+K+ 

Atom Charge Atom Charge 

Na32 0.7169 K32 0.9183 

Table 2. The atomic charge (Q/coulomb) for (SnSiO2)Li+Na+ and (SnSiO2)Li+K+ nanoclusters. 

(SnSiO2)Li+Na+ (SnSiO2)Li+K+ 

Atom Charge Atom Charge 

Si1 1.4606 Si1 1.4322 

O2 –0.6356 O2 –0.6374 

O3 –0.8304 O3 –0.8505 

Si4 1.4116 Si4 1.3833 

Si5 1.4378 Si5 1.4218 

Si6 1.4628 Si6 1.4225 

O7 –0.7260 O7 –0.6603 

O8 –0.8371 O8 –0.8570 

O9 –0.7879 O9 –0.7782 

O10 –1.0023 O10 –1.0651 

O11 –0.8100 O11 –0.8011 

O12 –0.9499 O12 –0.9407 

Si13 1.3977 Si13 1.3721 

O14 –0.7674 O14 –0.7208 

O15 –0.6972 O15 –0.7108 

Sn16 1.6975 Sn16 1.6924 

O17 –0.8093 O17 –0.8143 

O18 –0.8830 O18 –0.8782 

Sn19 1.6966 Sn19 1.6983 

Sn20 1.6701 Sn20 1.6756 

Sn21 1.6973 Sn21 1.7024 

O22 –0.8446 O22 –0.8299 

O23 –0.8928 O23 –0.8926 

O24 –1.0672 O24 –1.1100 

O25 –0.9083 O25 –0.9060 

O26 –1.0000 O26 –0.9997 

O27 –0.9326 O27 –0.9211 

Sn28 1.8333 Sn28 1.7233 

O29 –0.8900 O29 –0.8884 

O30 –0.8596 O30 –0.8607 

Li31 0.7052 Li31 0.7089 

Na32 0.6609 K32 0.8901 

3.2. TDOS analysis. 

Squirming the molecular orbital data owing to Gaussian graphs of unit altitude and 

entire width at "half maximum (FWHM)" of 0.3 eV by "GaussSum 3.0.2" [45] have computed 

total density of states (TDOS) diagrams. Regarding ion transport behavior through formation 

of (GeSiO2)Li+Na+, (GeSiO2)Li+K+, (SnSiO2)Li+Na+, and (SnSiO2)Li+K+ nanoclusters, TDOS 

has been measured. This parameter can indicate the existence of important chemical 

interactions, often on the convex side (Figure 3a, b, c, d). During the formation of 

(GeSiO2)Li+Na+ cluster, Figure 3a shows sharp and sophisticated peaks around –0.3, –0.45, 

and –0.60 a.u. Due to the covalent bond between two atoms of Li and Na with the (GeSiO2) 

cluster. (GeSiO2)Li+K+ cluster has shown pointed peaks around –0.3, –0.45, and –0.60 a.u. Due 

to the covalent bond between two atoms of Li and K with the (GeSiO2) cluster (Figure 3b). 

Furthermore, the maximum energy of TDOS for (SnSiO2)Li+Na+ (Figure 3c) with 

several peaks around –0.30, –0.40, and –0.55 a.u., with a maximum density of state of ≈ 24 

around –0.30 a.u., has been shown. Similar behavior of TDOS graphs has been observed for a 

hybrid cluster of (SnSiO2)Li+K+ (Figure 3d) with several remarkable peaks around –0.30, –

0.45, –0.55, and –0.7 a.u. 
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Figure3. TDOS graphs of (a) (GeSiO2)Li+Na+; (b) (GeSiO2)Li+K+; (c) (SnSiO2)Li+Na+; (d) (SnSiO2)Li+K+  

nanoclusters. 

3.3. LOL analysis. 

The localized orbital locator (LOL) has a similar expression compared to the electron 

localization function (ELF) [46].  

 

LOL(r) =
𝜏(r)

1+𝜏(r) 
; 𝜏(r) =

𝐷0(r)
1

2
 ∑ 𝜂𝑖𝑖 |∇𝜑𝑖 (r)|2

                                   (1) 

𝐷0(r) =
3

10
(6𝜋2)2 3⁄ [𝜌𝛼 (r)5 3⁄ +  𝜌𝛽 (r)5 3⁄ ]                         (2) 

 

Multiwfn [47, 48] also supports the approximate version of LOL defined by Tsirelson 

and Stash [49], namely, the actual kinetic energy term in LOL is replaced by second-order 

gradient expansion like ELF, which may demonstrate a broad span of bonding samples. This 

is Tsirelson’s version of LOL, which can be activated by setting “ELFLOL_type” to 1. For a 

special reason, if “ELFLOL_type” in settings.ini is changed from 0 to 2, another formalism 

will be used: 

 

LOL(𝐫) =
1

1+ [1
𝜏(𝐫)⁄ ]

2                                                             (3) 

 

If the parameter "ELFLOL_cut" in settings.ini is set to x, then LOL will be zero where 

LOL is less than x. 

Ion transferring through the formation of (GeSiO2)Li+Na+, (GeSiO2)Li+K+, 

(SnSiO2)Li+Na+, and (SnSiO2)Li+K+ nanoclusters can be defined by LOL graphs owing to 

exploring their delocalization/localization characterizations of electrons and chemical bonds 

(Figure 4a,b,c,d) [50–53]. 
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Figure 4. The counter map of LOL graphs for (a) (GeSiO2)Li+Na+; (b) (GeSiO2)Li+K+; (c) (SnSiO2)Li+Na+; 

(d) (SnSiO2)Li+K+ nanoclusters. 

 

A vaster jointed area engaged by an isosurface map has shown the electron 

delocalization in (GeSiO2)Li+Na+ (Figure 4a), (GeSiO2)Li+K+ (Figure 4b), (SnSiO2)Li+Na+ 

(Figure 4c), and (SnSiO2)Li+K+ (Figure 4d) through labeling atoms of O12, Si13, O26, 

Ge28/Sn28, X31(X=Li, Na or K) and H35. In fact, the counter map of LOL can confirm that 

(GeSiO2)Li+Na+, (GeSiO2)Li+K+, (SnSiO2)Li+Na+, and (SnSiO2)Li+K+ nanoclusters may 

increase the efficiency during ion transporting.  

Table 3. Dipole moment (debye), LUMO, HOMO, and energy gap (∆E) for (GeSiO2)Li+Na+, (GeSiO2)Li+K+, 

(SnSiO2)Li+Na+, and (SnSiO2)Li+K+ heteroclusters. 

Heteroclusters Dipole moment 

(debye) 

EHOMO 

(eV) 

ELUMO 

(eV) 

∆E=ELUMO –EHOMO 

(eV) 

(GeSiO2)Li+Na+ 2.0853 –5.8010 –5.2579 0.5431 

(GeSiO2)Li+K+ 1.5622 –6.0315 –5.1446 0.8869 

(SnSiO2)Li+Na+ 5.0772 –5.3386 –4.6734 0.6651 

(SnSiO2)Li+K+ 6.4714 –5.4629 –4.9025 0.5604 

Moreover, the intermolecular orbital overlap integral is important in discussions of 

intermolecular charge transfer, which can calculate HOMO-HOMO and LUMO-LUMO 

overlap integrals between the H2 molecules and heteroclusters of (GeSiO2)Li+Na+, 

(GeSiO2)Li+K+, (SnSiO2)Li+Na+, and (SnSiO2)Li+K+. The applied wavefunction level is 

CAM–B3LYP–D3/6–311+G (d, p) that corresponds to HOMO and LUMO, respectively 

(Table 3). 
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The amount of "Mayer bond order" [54] is generally according to the empirical bond 

order for the single bond, which is nearly 1.0. "Mulliken bond order" [55] with a small accord 

with empirical bond order is not appropriate for quantifying bonding strength, for which Mayer 

bond order always performs better. However, "Mulliken bond order" is a good qualitative 

indicator for "positive amount" of bonding and "negative amount" of antibonding, which are 

evacuated and localized, respectively (Table 4). 

Table 4. The bond order of Mayer, Wiberg, Mulliken, Laplacian, and Fuzzy from mixed alpha and beta density 

matrix for (GeSiO2)Li+Na+, (GeSiO2)Li+K+, (SnSiO2)Li+Na+, (SnSiO2)Li+K+ heteroclusters. 

Compound Bond type 
Bond order 

Mayer Wiberg Mulliken Laplacian Fuzzy 

(GeSiO2)Li+Na+ 

O12–Si13 0.4916 0.6121 0.1901 0.2102 1.0149 

O12–Li31 0.1405 0.2054 0.1300 0.1586 0.1336 

O26–Li31 0.2116 0.2732 0.1830 0.2032 0.1789 

O26–Ge28 0.6388 0.5733 0.2466 0.2395 1.0434 

Si13–Ge28 0.6316 0.7527 0.6785 2.2836 0.8317 

O10–Si13 0.4359 0.6018 0.1239 0.1413 0.9110 

O10–Na32 0.2471 0.2257 0.2669 0.0769 0.6335 

O24–Na32 0.2410 0.2190 0.2704 0.0516 0.5598 

O24–Ge28 0.3621 0.5564 0.0856 0.2491 0.9539 

(GeSiO2)Li+K+ 

O12–Si13 0.4993 0.6182 0.2012 0.2180 1.0213 

O12–Li31 0.1391 0.2037 0.1272 0.1352 0.1315 

O26–Li31 0.2176 0.2772 0.1865 0.1941 0.1808 

O26–Ge28 0.4995 0.5838 0.2581 0.2438 1.0562 

Si13–Ge28 0.7024 0.7860 0.5475 2.3676 0.8538 

O10–Si13 0.4299 0.5954 0.0842 0.1291 0.9012 

O10–K32 0.7510 0.2648 0.5656 0.1557 0.7332 

O24–K32 0.7482 0.2571 0.4638 0.1139 0.6526 

O24–Ge28 0.3791 0.5496 0.4175 0.1876 0.9399 

(SnSiO2)Li+Na+ 

O12–Si13 0.4878 0.6031 0.1784 0.2050 1.0002 

O12–Li31 0.1555 0.2119 0.1375 0.1649 0.1361 

O26–Li31 0.2463 0.2824 0.1984 0.1419 0.1564 

O26–Sn28 0.4561 0.5295 0.2540 0.4585 1.2026 

Si13–Sn28 0.7026 0.7441 1.1803 2.7926 0.8697 

O10–Si13 0.4683 0.6055 0.1788 0.1454 0.9075 

O10–Na32 0.2639 0.2228 0.2881 0.0748 0.6292 

O24–Na32 0.2766 0.2204 0.2932 0.0512 0.4983 

O24–Sn28 0.3222 0.1834 0.1101 0.4097 1.1118 

(SnSiO2)Li+K+ 

O12–Si13 0.5046 0.6117 0.1850 0.2144 1.0107 

O12–Li31 0.1562 0.2052 0.1395 0.1547 0.1341 

O26–Li31 0.2444 0.2795 0.1985 0.1389 0.1555 

O26–Sn28 0.4623 0.5316 0.2627 0.4579 1.2047 

Si13–Sn28 0.7559 0.7660 1.0806 2.8159 0.8750 

O10–Si13 0.4534 0.6007 0.1356 0.1308 0.9043 

O10–K32 0.1682 0.2583 0.5401 0.1497 0.7255 

O24–K32 0.1632 0.2524 0.4742 0.0739 0.5838 

O24–Sn28 0.3677 0.5234 0.0808 0.3946 1.0985 

As shown in Table 4, the "Laplacian bond order" [56] exhibits a direct correlation with 

bond polarity, bond dissociation energy, and bond vibrational frequency. The low value of the 

Laplacian bond order might demonstrate that it is insensitive to the calculation degree applied 

for producing electron density [57–63].  

Generally, the value of “Fuzzy bond order” is near Mayer bond order, especially for 

low-polar bonds, but is much more stable with respect to the change in basis set. Computation 

of "Fuzzy bond order" demands running "Becke's DFT" numerical integration, owing to which 

the calculation value is larger than the assessment of "Mayer bond order", and it can be more 

precise [64].  
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4. Conclusions 

In this work, we have investigated the ion transporting of Li+, Na+, K+ by (GeO–SiO) 

and (SnO–SiO) heteroclusters in the human cell through the formation of (GeSiO2)Li+Na+, 

(GeSiO2)Li+K+, (SnSiO2)Li+Na+, (SnSiO2)Li+K+ heteroclusters by first-principles 

computations of the DFT method. The alterations of charge density illustrated a remarkable 

charge transfer towards (GeSiO2)Li+Na+, (GeSiO2)Li+K+, (SnSiO2)Li+Na+, (SnSiO2)Li+K+. 

The fluctuation in charge density values demonstrates that the electronic densities were at the 

boundary of adsorbate/adsorbent atoms during the ion-transporting status. Besides, 

thermodynamic parameters describing ion transporting through the formation of alkali metals-

based nanoclusters of (GeSiO2)Li+Na+, (GeSiO2)Li+K+, (SnSiO2)Li+Na+, (SnSiO2)Li+K+ have 

been investigated, including the internal process of the adsorbent–adsorbate system. Finally, 

the chemical tailorability and size design or reduction into quantum dots are some of the 

features that are constantly explored for newer applications. There are various methods that 

have been applied in the preparation of the different semiconductor nanomaterials. The relative 

efficacies and cation selectivities of polyvalent anions can largely be explained on the basis of 

electrostatic interactions governing ion pair formation. However, the chelating properties, 

structural flexibility, polarizability of the anions, and the accessibility of the ion pairs to the 

anion exchange pathway also need to be considered.  
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