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Abstract: This research introduces a cutting-edge generation of pro-vesicular drug delivery systems 

known as proniosomes, which are crafted from a blend of non-ionic surfactants, lecithin, and 

cholesterol. These components ingeniously transform into niosomes upon hydration, with the objective 

of establishing a reliable and enduring transdermal delivery system for nebivolol hydrochloride. The 

project entailed the development, optimization, and examination of a proniosomal gel designed for 

topical application aimed at enhancing the transdermal delivery of nebivolol hydrochloride. The 

concoction process incorporated Lutrol F68 and lecithin for surfactant purposes, cholesterol to aid in 

stabilization, and was completed with minimal additions of ethanol and water. The proniosomal gel, 

imbued with nebivolol hydrochloride, underwent stability testing, and the niosomes that emerged from 

this formulation were scrutinized for their morphological, size, zeta potential, and entrapment efficiency 

characteristics. These analyses verified their compatibility with skin applications. The creation of the 

proniosomal gel utilized the coacervation phase separation approach, followed by in vitro evaluations 

to measure nebivolol hydrochloride's permeation through freshly obtained rat skin samples. Findings 

from these permeation studies revealed a pronounced improvement in nebivolol hydrochloride delivery 

using the proniosomal gel as opposed to a conventional 1.0% pure gel. Remarkably, the NPG5 batch 

showcased the most significant entrapment efficiency, achieving up to 95.5%, and displayed sustained 

drug release over a 24-hour timeframe. The proniosomal gel's skin permeation rate was quantified at 

75.5%. These results received further validation through Scanning Electron Microscopy (SEM) and 

zeta potential analysis, reinforcing the efficacy of the proniosomal gel as a transdermal drug delivery 

vehicle. 
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1. Introduction 

Nebivolol hydrochloride (NH) is a unique pharmacological entity among beta-blockers, 

distinguished by its dual mechanism of action. It combines beta-1 adrenergic receptor blockade 

with nitric oxide (NO)-mediated vasodilation, thereby offering a therapeutic profile that is 

beneficial for hypertensive patients with comorbid conditions [1-3]. NH is extensively 

prescribed for the management of hypertension and is valued for its efficacy in lowering blood 

pressure, improving endothelial function, and offering cardiovascular protection. Its distinct 

mechanism contributes to hemodynamic advantages and minimizes the adverse effects 

typically associated with conventional beta-blockers, such as reduced cardiac output and 

bronchoconstriction [4-6]. 

The primary objective in the formulation of a proniosomal gel for NH is to create a 

system that enhances the drug's bioavailability through the skin, offering a sustained release 

profile that could potentially minimize systemic side effects and bypass hepatic first-pass 

metabolism. This involves selecting appropriate non-ionic surfactants, co-surfactants, and 

cholesterol to form stable proniosomes that can effectively encapsulate NH, ensuring its 

stability and permeability through the skin [7-8]. 

Formulating proniosomes as a dry preparation, necessitating rehydration before the 

application, is an effective strategy for maintaining their physical stability and the integrity of 

the vesicles [9]. For transdermal drug delivery, proniosomes are engineered into a gel format 

that is appropriate for topical use. Upon application, this proniosomal gel utilizes the water 

present in the skin to reconstitute into niosomes [10-12]. The bilayer constituents, comprising 

phospholipids and non-ionic surfactants within the proniosomes, function as penetration 

enhancers, facilitating the effective delivery of the drug through the skin barrier [13-14]. 

In this study, efforts were made to create a nebivolol hydrochloride transdermal 

proniosomal gel designed to sustain the medication's release to targeted tissues. The goal is to 

enhance patient adherence to the treatment regimen and mitigate the potential gastrointestinal 

side effects associated with nebivolol hydrochloride. 

2. Materials and Methods 

2.1. Materials. 

The active pharmaceutical ingredient, nebivolol hydrochloride, was generously 

provided as a sample by MSN Laboratories Ltd., located in Hyderabad, India. The excipients 

used, Lutrol F68 (Poloxamer 188) and Lipoid-80 H (Lecithin: soybean phosphatidylcholine), 

were sourced from UV Scientific, also in Hyderabad. Additionally, Carbopol 974P NF was 

acquired from BASF, Mumbai, India. All other chemicals and reagents utilized in this research 

were of analytical grade, ensuring the precision and reliability of the study outcomes. 

2.2. Methods. 

2.2.1. Preparation of nebivolol hydrochloride-loaded proniosomal gel. 

Proniosomes loaded with nebivolol hydrochloride were synthesized using the 

coacervation phase separation technique as outlined by Vora and colleagues. Initially, a 

mixture of the non-ionic surfactant Lutrol F68, Lipoid-80 H, and cholesterol was prepared in a 

9:9:6 weight ratio, accompanied by an appropriate quantity of ethanol, within a wide-mouthed 
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vial. To this blend, 1% w/w nebivolol hydrochloride was introduced, and the vial was securely 

sealed to inhibit the evaporation of the solvent. The mixture was then gently heated in a water 

bath maintained at a temperature of 65 ± 2°C for a duration of 10 minutes or until the 

components were fully dissolved. Following this, the mixture was allowed to return to ambient 

temperature. Subsequently, an aqueous phase, specifically a phosphate buffer with a pH of 6.8, 

was incrementally added to the vial, which was then placed back in the water bath for an 

additional 5 minutes or until a clear solution was achieved. This solution was left to cool at 

room temperature, ultimately forming the proniosomal gel [15-19]. 

2.2.2.1. Formulation of pure nebivolol hydrochloride-loaded topical gel (PG). 

Carbopol-974P was carefully blended with approximately 25 ml of distilled water, 

employing mechanical agitation to ensure a homogenous mixture. To this mixture, 

methylparaben (0.2%) and propylparaben (0.02%) were first dissolved in ethanol and 

subsequently integrated into the Carbopol solution under continuous stirring. This concoction 

was then allowed to rest overnight to facilitate the full hydration of the Carbopol polymer. 

Following the hydration period, nebivolol hydrochloride was introduced into the mixture at a 

concentration of 1% w/w, with stirring maintained to promote uniform drug dispersion within 

the gel. The pH of the polymer mixture was adjusted to the desired level through the cautious, 

dropwise addition of triethanolamine. After complete mixing, the preparation yielded a finely 

textured gel. 

2.2.2.2. Drug diffusion and drug entrapment effect of bilayer composition. 

To investigate the effect of various factors on the characteristics of proniosomes, 

several batches were prepared, with the concentration of the non-ionic surfactant Lutrol F68 

and cholesterol being the primary variables under study. The research design was based on a 

32-factorial methodology, as outlined in Table 1. The level of Lipoid-80 H was kept constant 

in all formulations, as specified in Table 2. Entrapment efficiency (EE) and drug diffusion rate 

were selected as the dependent variables for this study. This approach enabled an evaluation of 

how changes in the quantities of Lutrol F68 and cholesterol affect these crucial aspects of 

proniosome performance [20-21]. 

Lutrol F68 and cholesterol were combined with alcohol and an aqueous solution to 

create a semi-solid gel formulation that encapsulates nebivolol hydrochloride, known as a 

proniosomal gel. This gel is capable of transforming into a niosomal dispersion when diluted 

with an ample aqueous phase and subjected to mild agitation. The process leading to the 

proniosomal gel's formation involves the initial creation of a lamellar liquid crystal phase. This 

phase emerges from the interaction between the non-ionic surfactant (Lutrol F68) and lecithin 

(Lipoid-80 H) upon reaching the kraft temperature, facilitated by a small amount of alcohol. 

Upon the introduction of excess water, this crystalline structure transitions into a niosomal 

dispersion. 

The proniosomal gel is designed to draw moisture directly from the skin, initiating 

instant hydration. This unique hydration mechanism helps circumvent common stability 

challenges faced by aqueous niosome dispersions, such as vesicle fusion, aggregation, and 

content leakage. This approach not only enhances the stability of the drug delivery system but 

also ensures a more efficient and controlled release of the active pharmaceutical ingredient 

onto the skin. 
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Table 1. Experimental design layout. 

Formulation code X1 X2 
NPG-1 -1 +1 

NPG-2 -1 0 

NPG-3 -1 -1 

NPG-4 0 +1 

NPG-5 0 0 

NPG-6 0 -1 

NPG-7 +1 +1 

NPG-8 +1 0 

NPG-9 +1 -1 

CCNPG-1 -0.5 -0.5 

CCNPG-2 +0.5 +0.5 

Table 2. Formulae for nebivolol hydrochloride proniosomal gel (NPG) batches. 

Formulation 

Nebivolol 

hydrochloride 

in mg 

Lutrol 

F68 in 

mg 

Cholesterol 

in mg 

% 

entrapment 

efficiency 

(%EE) 

% drug 

diffused 

Vesicle size 

(nm) 

Polydispersity 

index (PDI) 

NPG-1 8 80 80 65.36 ±0.89 96.73±0.23 652.4±20.41 1.152 ± 0.20 

NPG-2 8 80 60 82.12±0.91 92.52±1.83 445.1±30.15 1.326 ± 0.10 

NPG-3 8 80 40 84.25± 1.36 94.12±0.22 712.2±20.22 1.834 ± 0.15 

NPG-4 8 90 80 89.53± 1.02 95.23±0.56 703.5±24.50 0.934± 0.12 

NPG-5 8 90 60 98.41± 0.34 98.72 ± 1.15 308.0±10.32 0.918± 0.12 

NPG-6 8 90 40 94.67± 1.07 97.52 ± 0.43 449.1±26.41 0.921± 0.10 

NPG-7 8 100 80 81.12±0.82 92.52±1.83 445.1±30.15 1.326 ± 0.10 

NPG-8 8 100 60 83.25± 1.31 94.12±0.22 712.2±20.22 1.834 ± 0.15 

NPG-9 8 100 40 80.22± 1.00 95.23±0.56 703.5±24.50 0.934± 0.12 

CCNPG-1 8 85 50 78.89±0.18 95.14±0.61 645.4±5.16 1.291±0.61 

CCNPG-2 8 95 70 77.18±0.41 94.49±0.92 643.3±15.11 1.209±0.05 
*Data expressed as Mean ± SD; n=3. 

2.3. Characterization of nebivolol hydrochloride proniosomal gel. 

2.3.1. Entrapment efficiency. 

To accurately prepare a sample for analysis, a precise amount of 0.1 g of the 

proniosomal gel is measured and transferred into a glass tube. To this, 10 ml of an aqueous 

solution, specifically a phosphate buffer with a pH of 6.8, is added. This mixture is then 

subjected to sonication for a duration of 5 minutes using an ultrasonicator, a step crucial for 

ensuring the thorough dispersion of the gel and facilitating the transformation of the 

proniosomal gel into niosomes. Following the sonication process, the mixture, now containing 

nebivolol-loaded niosomes, undergoes centrifugation at 10,000 rpm for 45 minutes using a 

REMI centrifuge. This centrifugation is designed to segregate the niosomes encapsulating 

nebivolol from any non-encapsulated drug remaining in the suspension [22-25]. 

The supernatant, which holds the unentrapped nebivolol, is then carefully extracted for 

further analysis. The concentration of nebivolol within this supernatant is quantitatively 

determined utilizing a UV spectrophotometer (Merck, Thermoscientific Evolution 201, 

Shanghai, China), set to a wavelength of 282 nm, with the phosphate buffer pH 6.8 serving as 

the reference blank [27-30]. The calculation of the drug's entrapment efficiency (EE) within 

the niosomes is subsequently performed by employing the specified equation. 

 

EE (%) =
Entrapped drug

Total drug added
X 100            (1) 
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2.3.2. Percentage drug diffusion.  

For the diffusion studies, a Franz diffusion cell apparatus was utilized. A dialysis 

membrane was securely affixed onto the diffusion cell, creating a barrier for the test substance. 

A predetermined quantity of the proniosomal gel was carefully placed on one side of this 

membrane. The opposite side, known as the receptor compartment, was filled with 10 ml of 

phosphate buffer saline with a pH of 6.8 (PBS). This arrangement ensures a controlled 

environment for the diffusion study. 

To maintain a consistent mixing and facilitate the diffusion process, the solution within 

the receptor compartment was stirred at a constant speed of 100 rpm using a Teflon-coated 

magnetic bead. Over a duration of 24 hours, 1 ml samples were systematically extracted from 

the receptor compartment every 60 minutes. Each of these samples was then subjected to 

analysis using a UV spectrophotometer, specifically set to a wavelength of 282 nm, to 

determine the concentration of the diffused substance. 

To compensate for the volume of solution removed during sampling, fresh phosphate 

buffer saline (pH 6.8) was added back into the receptor compartment, ensuring the volume 

within the compartment remained constant throughout the experiment. This meticulous 

replacement process is crucial for maintaining the integrity of the diffusion conditions over the 

24-hour observation period [26-33]. 

2.3.2. Particle size and polydispersity index. 

Photon correlation spectroscopy (PCS), employing a Nanophox device at ambient 

temperature, was utilized to ascertain the mean particle size and size distribution of the drug-

laden proniosomal gel following its hydration with phosphate buffer saline (PBS) at pH 6.8. 

The resultant nebivolol niosomal dispersion was diluted with filtered double-distilled water. 

This dilution step is essential to mitigate Multiple Scattering events that could otherwise skew 

the accuracy of particle size measurements. The breadth of the size distribution, an important 

parameter for characterizing the uniformity of particle sizes within the dispersion, was 

quantified by the Polydispersity Index (PDI) [34-36]. The PDI is calculated using a specific 

formula that reflects the degree of size variation within the sample, offering insights into the 

consistency and stability of the niosomal formulation. 

PDI =
(X90−X10)

X50
                 (2) 

2.3.4. Scanning electron microscopy. 

The morphology of the proniosomes, post-hydration with phosphate buffer saline 

(PBS) at pH 6.8, was meticulously analyzed through a preparation process involving gold ion 

coating for a duration of 5 minutes. This coating enhances the conductivity of the samples, 

making them suitable for high-resolution imaging. Following this preparatory step, images 

were captured using a scanning electron microscope (SEM), specifically the Hitachi S-3700N 

model located in Tokyo, Japan. The SEM was operated at an accelerating voltage of 20 kV, 

enabling the detailed visualization of the surface structures and morphological characteristics 

of the hydrated proniosomes. This imaging technique provides critical insights into the physical 

attributes of the proniosomes, including their shape, size, and surface topology, which are 

essential for understanding their behavior in biological systems. 

https://doi.org/10.33263/LIANBS143.136
https://nanobioletters.com/


https://doi.org/10.33263/LIANBS143.136 

 https://nanobioletters.com/ 6 of 18 

 

2.3.5. Zeta potential analysis. 

 The surface charge of drug-loaded vesicles was accurately measured using a Zeta 

potential analyzer, specifically the Horiba SZ-100 and Malvern Instruments Nano ZS from the 

U.K. To ensure precision in the measurement, the analysis duration was set to 60 seconds. This 

timeframe was chosen to provide a balance between acquiring a stable measurement and 

minimizing potential changes in the sample during the analysis. The average zeta potential, 

which is a key indicator of the surface charge and stability of the vesicular system, was 

determined after hydrating the proniosome preparation with phosphate buffer saline (PBS) at 

pH 6.8. The measurements were conducted at a controlled temperature of 25°C to ensure 

consistency and repeatability of the results. To enhance the reliability of the data, three separate 

runs were performed, allowing for the calculation of an average value and an assessment of the 

variability within the measurements. This methodological approach ensures a comprehensive 

understanding of the electrostatic properties of the proniosomes, which are critical for 

predicting their behavior in biological environments. 

2.3.6. Differential scanning calorimetry. 

The thermal behavior of nebivolol hydrochloride proniosomes, post-hydration with 

PBS pH 6.8, was analyzed through differential scanning calorimetry (DSC) using a Shimadzu 

DSC 60 apparatus. This procedure involved examining 10 mg samples of the proniosomal gel, 

which were encapsulated in conventional aluminum pans, to ensure a consistent analysis 

environment. The thermal profiles, or thermograms, for both the hydrated nebivolol 

proniosomes and the raw nebivolol powder were recorded. This was executed at a uniform 

heating rate of 10°C/min, spanning a broad temperature spectrum from 0 to 400°C, under a 

steady flow of nitrogen at 20 ml/min. 

This DSC analysis is instrumental in revealing the thermal transitions, such as melting 

points and crystallization behavior, of the proniosomes compared to the unformulated drug. 

The introduction of a nitrogen atmosphere is a critical step in avoiding oxidation and other 

reactions influenced by air, thereby ensuring the integrity of the data collected. This 

investigation aids in understanding the stability and the physicochemical interactions within 

the proniosomal system, which are vital for optimizing formulation strategies and predicting 

shelf life. 

2.3.7. X-ray diffraction. 

The solid-state properties of nebivolol hydrochloride proniosomes, following hydration 

with phosphate buffer saline (PBS), were scrutinized using X-ray diffraction (XRD) analysis. 

This technique provides insights into the crystalline structure and phase purity of materials. 

The investigation encompassed both the bulk nebivolol hydrochloride and the drug-

encapsulated proniosomal dispersion. A Shimadzu XRD-7000 X-ray diffractometer, fitted with 

an X-ray generator set to operate at 45 kV and 4 mA, was employed for this purpose. 

The scanning procedure was conducted at a speed of 4° per minute. This careful and 

deliberate scanning pace allows for the detailed observation of diffraction patterns, which are 

pivotal for identifying the crystalline or amorphous nature of the substances under study. By 

comparing the XRD patterns of the hydrated proniosomes with those of the bulk drug, 

researchers can determine any alterations in the drug's solid-state form induced by the 
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proniosomal formulation process. Such information is crucial for understanding the stability, 

solubility, and bioavailability of the drug within the proniosomal system. 

2.3.8. Ex vivo skin permeation studies. 

Ex vivo skin permeation studies were meticulously conducted utilizing a modified 

Franz diffusion cell setup, focusing on the abdominal skin of male albino Wistar rats, each 

weighing approximately 250 ± 20 g. The experimental design ensured that the skin was secured 

in such a manner that its dermal side faced the receptor medium directly. This medium, 

phosphate buffer saline (PBS) with a pH of 6.8, filled the receptor chamber, which had a cross-

sectional area of 4.32 cm2. 

The proniosomal gel was evenly applied to the dorsal side of the rat skin. Following 

this, the donor compartment was carefully positioned, and the entire setup was maintained at a 

constant temperature of 37°C ± 0.5°C, with a stirring speed set to 100 rpm. This controlled 

environment is essential for closely simulating human skin conditions. 

After a specific period of 18 hours, a 1 ml sample was drawn from the receptor phase 

for analysis. This sample was then evaluated for the percentage of drugs that had permeated 

through the skin from the applied formulations. The analysis was performed using a UV 

spectrophotometer set at a wavelength of 282 nm. This process provides valuable insights into 

the efficiency of the proniosomal formulation in facilitating the transdermal delivery of the 

drug. 

3. Results and Discussion 

3.1. Effect of bilayer composition on drug diffusion and drug entrapment. 

Surfactants play a pivotal role in the formation of niosomal vesicles, with their 

concentration significantly impacting the efficiency with which drugs are entrapped within 

these structures. Research indicates that altering the concentration of the surfactant Lutrol F68 

affects the entrapment efficiency of the niosomes. Specifically, increasing the surfactant 

concentration from 80 to 90 mg results in a notable enhancement in entrapment efficiency. This 

improvement can be attributed to the increased formation of niosomes, leading to a larger 

hydrophobic domain within which drugs can be encapsulated, thereby elevating entrapment 

efficiency. 

Contrarily, a subsequent increase in surfactant concentration from 90 to 100 mg (noted 

in formulation F9) causes a reduction in entrapment efficiency, which drops to 80.22 ± 1.00%. 

This decline is theorized to stem from the formation of mixed micelles alongside niosomal 

vesicles at higher surfactant concentrations. These micelles, typically smaller than 10 nm, have 

a reduced capacity for drug encapsulation compared to niosomes, which likely contributes to 

the observed decrease in entrapment efficiency. 

Given these observations, it becomes evident that a surfactant concentration threshold 

exists, beyond which the formation of mixed micelles diminishes the overall entrapment 

efficiency of the niosomal system. Therefore, based on the data, a surfactant quantity of 90 mg 

is identified as the optimal concentration for achieving maximum entrapment efficiency in the 

proniosomal gel formulation. This finding underscores the importance of carefully optimizing 

surfactant concentrations in the development of niosomal drug delivery systems to ensure 

efficient drug encapsulation and subsequent therapeutic efficacy. 
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The concentration of cholesterol significantly influences the drug entrapment efficiency 

within vesicles, highlighting its critical role in the formation and stability of niosomal 

structures. An increase in cholesterol content from 40 mg (in formulation F6, with an 

entrapment efficiency of 94.67%) to 60 mg (in batch NPG5, achieving an entrapment efficiency 

of 98.41%) markedly enhances the entrapment efficiency. This improvement can be attributed 

to cholesterol's function as a stabilizing agent within the surfactant bilayer, effectively 

minimizing the transition from gel to sol states and thus resulting in vesicles that are less prone 

to leakage. This results in the formation of a more rigid vesicular structure, which improves 

entrapment efficiency and decreases the permeability of the medication that is encapsulated. 

 

Nevertheless, the entrapment efficiency drops to 89.53% in formulation F4 when the 

cholesterol concentration is raised to 80 mg. This decrease is probably the result of the 

medication and cholesterol molecules competing for space inside the bilayer.  In addition to 

displacing the medication from the bilayer, too much cholesterol can also compromise the 

vesicular membrane's structural integrity. 

Furthermore, it was found that, especially in the NPG5 batch, the diffusion rate of 

nebivolol hydrochloride through a dialysis membrane rises with the surfactant content. The 

presence of non-ionic surfactant, which modifies the stratum corneum's structural makeup and 

improves the drug's thermodynamic activity and skin-vesicle partitioning, can be used to 

explain this occurrence. These results lead to the conclusion that the proniosomal gel 

formulation's ideal cholesterol concentration of 60 mg optimizes drug entrapment efficiency. 

With this particular cholesterol level, the NPG5 batch stands out as the best formulation 

because it provides a balance between permeability and structural integrity, which is essential 

for efficient drug administration. 

3.2. Characterization of nebivolol hydrochloride proniosomal gel (NPG). 

3.2.1. Entrapment efficiency. 

At 98.41±0.34%, the percentage entrapment efficiency was consistently high across 

several proniosomal batches. This consistency across all evaluated batches suggests a 

dependable formulation method that ensures effective drug encapsulation. It  is indicative of a 

robust and optimized formulation process capable of achieving consistently high levels of drug 

encapsulation within the proniosomal vesicles. 

3.2.2. Percentage drug diffusion. 

The comparative in vitro drug diffusion study between nebivolol hydrochloride 

proniosomal gel (NPG5) and the pure drug-loaded gel (PG) was meticulously conducted using 

a dialysis membrane and a Franz diffusion cell setup. The core objective of an ideal topical 

formulation is to ensure a prolonged release of the active ingredient. Such a characteristic 

minimizes the need for frequent application, thereby enhancing patient compliance. According 

to the results, which are detailed in Table 3, the plain drug-loaded gel (PG) exhibited a quicker 

diffusion rate of the drug compared to the proniosomal gel. 

This observation underscores the slower diffusion rate of the drug when delivered via 

the nebivolol hydrochloride proniosomal gel (NPG5), indicating a more controlled and 

sustained release profile. This sustained release mechanism is particularly advantageous for 

topical applications, as it ensures a continuous delivery of the drug over an extended period. 

https://doi.org/10.33263/LIANBS143.136
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Therefore, the nebivolol hydrochloride proniosomal gel (NPG5) stands out as an optimized 

formulation, effectively balancing drug release rates to meet therapeutic needs while 

potentially improving user adherence to the treatment regimen. 

Table 3. Comparative In-vitro drug diffusion study through the dialysis membrane. 

Time 

(h) 

NPG5 batch 

(% diffused) 
Pure drug-loaded gel 

0 0 0 

1 10.2±0.85 22.14 

2 19.85±0.49 45.84 

3 24.1±0.71 61.22 

4 31.85±0.64 81.63 

5 36.15±0.64 88.55 

6 42.05±0.35 98.66 

7 44.95±0.49 - 

8 51.95±0.92 - 

12 57.3±071 - 

18 63.05±0.21 - 

24 65.5±0.71 - 

3.2.3. Particle size and polydispersity index. 

Table 4 and Figure 1 present the measurements of vesicle dimensions and the diversity 

in size distribution (polydispersity index) for the NPG5 proniosomal gel batch following its 

reconstitution with phosphate buffer saline (PBS). These metrics are pivotal for evaluating the 

uniformity and physical attributes of the niosomes produced upon the gel's hydration. 

 
Figure 1. Vesicle size distribution curve of optimized batch (NPG5). 

3.2.4. Scanning electron microscopy. 

The scanning electron micrograph (SEM) of the proniosomal dispersion from the NPG5 

batch, as depicted in Figure 2, illustrates that the vesicles exhibit a spherical shape and are 

within the nanometer scale in size. This visual evidence is crucial for confirming the nano-

scale morphology of the proniosomal vesicles, which is indicative of their potential for 

enhanced cellular uptake and efficient drug delivery through biological barriers. The spherical 

nature of the vesicles is typical of well-formed niosomes, suggesting an optimal formulation 

process that could Favor consistent drug release profiles and stability. 
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Figure 2. SEM image of optimized formulation batch (NPG5). 

3.2.5. Zeta potential analysis. 

As shown in Figure 3, the optimized batch NPG5's zeta potential measurement was -

30.4 ± 7.68 mV By avoiding aggregation, this value indicates that the generated proniosomes 

have a significant surface charge, which is essential for preserving vesicular stability. This size 

of negative zeta potential usually indicates that the vesicles are sufficiently electrostatically 

repelled to prevent coalescence and provide a steady dispersion. This property contributes to 

the steady release rates and bioavailability of the encapsulated medication and is crucial for the 

durability and effectiveness of proniosomal formulations in drug delivery applications. 

 
Figure 3. Zeta potential graph of optimized formulation batch NPG5 

3.2.6. Differential scanning calorimetry. 

The proniosomal dispersion containing nebivolol hydrochloride was subjected to 

thermal examination using differential scanning calorimetry (DSC).  Nebivolol hydrochloride's 

crystalline structure was demonstrated by its strong melting point of 229.31°C in its pure form. 

However, as seen in Figures 4a and b, this particular thermal signature was not present in the drug's 

DSC thermograms following its formation into the proniosomal gel.  The sharp endothermic peak linked 

to nebivolol hydrochloride's melting point in the gel form vanishes, indicating that the medication 
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changes into an amorphous state inside the proniosomal matrix. This change suggests that the drug 

molecules' ordered, structured organization is upset, resulting in a dispersion that, when embedded in 

the proniosomal gel, lacks a distinct crystalline shape.  

 
Figure 4. (a) DSC thermogram of pure drug nebivolol hydrochloride; (b) optimized formulation batch NPG5. 

3.2.7. X-ray diffraction (XRD). 

The findings from the study align with the outcomes of the differential scanning 

calorimetry (DSC) analysis, confirming the crystalline nature of nebivolol hydrochloride. This 

crystalline state is characterized by distinct peaks observed at 13.6°, 17.8°, 22.7°, 27.9°, 33.3°, 

and 41.2°, as depicted in Figures 5a and b. Such peaks are indicative of the structured, regular 

arrangement of molecules typical of a crystalline substance. 

 
(a) 

 
(b) 

Figure 5. XRD graph of (a) pure drug nebivolol hydrochloride; (b) in formulation batch NPG5. 

Table 4. Characterization of nebivolol hydrochloride-loaded proniosomal gel (Batch NNP5). 

Appearance Size (nm) Zeta potential (mV) Polydispersity index (%) entrapment efficiency 

Clear gel 308.0±10.32 -30.4 ± 7.68 0.918± 0.12 98.41± 0.34 

Data represent mean ± SD (n = 3). 
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3.2.8. Ex vivo skin permeation studies. 

The study focused on comparing the skin permeation capabilities of two formulations: 

the proniosomal gel (specifically batch NPG5) and a gel loaded with the pure drug. Both 

formulations were applied to the dorsal skin surface, which was then positioned against the 

donor compartment for permeation testing over a 24-hour period. The outcomes from the ex 

vivo skin permeation studies indicated that the gel containing the pure drug-facilitated a 

66.97% drug permeation through rat skin within the first 6 hours, showcasing a higher rate of 

permeation and the greatest cumulative percentage of drug release (% CDR) into the receptor 

medium. In contrast, the optimized nebivolol hydrochloride proniosomal gel formulation 

(NPG5) exhibited a slower permeation rate, achieving 58.73% drug permeation through the 

skin by the 24-hour mark. A graphical comparison of the drug permeation rates between these 

two formulations is presented in Figure 6, illustrating the differential permeation profiles and 

efficacy of each formulation in delivering the drug through the skin. 

 
Figure 6. Ex vivo skin permeation study of nebivolol hydrochloride proniosomal gel (NPG5) and pure drug-

loaded gel. 

3.3. Discussion. 

For the development of a proniosomal gel designed for topical application, excipients 

known for their compatibility with the skin were chosen. Surfactants such as Lutrol F68 and 

lecithin were selected due to their proven skin-friendliness. Additionally, cholesterol, a key 

structural element of cellular membranes, was added to improve the vesicles' permeability and 

stability. This addition notably increases the vesicles' entrapment capability for the drug while 

simultaneously elevating the viscosity of the niosomal dispersion and adding structural 

integrity to the otherwise flexible bilayers, resulting in more orderly and structurally coherent 

vesicles. 

Cholesterol's integration into the bilayer not only facilitates better drug partitioning but 

also optimizes its encapsulation within the vesicles. This structural enhancement decreases the 

vesicles' permeability, contributing to a higher entrapment efficiency. Nevertheless, a 

cholesterol content exceeding 80 mg tends to diminish drug entrapment levels, as excessive 

cholesterol may displace the drug molecules within the bilayer, potentially leading to the 

expulsion of the drug during vesicle formation. Additionally, it can disrupt the consistent 

bilayer structure, which could result in the medicine being enclosed leaking.  

The distinctive crystalline peaks of nebivolol hydrochloride vanished after the drug was 

integrated into the vesicles, according to solid-state examinations of the gel using differential 
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scanning calorimetry (DSC) and X-ray diffraction (XRD). This indicated that the drug had 

changed to an amorphous state. This modification offers benefits for efficient topical 

administration by greatly improving the drug's penetration and retention properties. 

Applying the gel to the skin is made easier by its pseudoplastic qualities, which allow 

it to realign with applied shear and exhibit a decrease in viscosity with shear stress. By changing 

the crystallinity of the lipid layers of the skin, non-ionic surfactants also improve penetration 

and boost the effectiveness of medication administration.  Increased skin penetration rates are 

also a result of nebivolol hydrochloride's better solubility in this formulation. 

The proniosomal formulation changes into a vesicular structure when hydrated, greatly 

increasing the drug's ability to penetrate the skin.  This feature sets it apart from pure nebivolol 

hydrochloride gel, which mostly functions via a hydrophilic mechanism and doesn't contain 

any lipidic or oily components. Vesicles of nanometric size are produced when hydrophobic 

surfactants and cholesterol are added to the NPG formulation.  These vesicles provide the skin 

with a large surface area and an efficient occlusive layer.  This layer improves the skin's 

moisture content and stops transepidermal water loss, which allows the medication to penetrate 

deeper and permeate better.  

The smaller particle size inherent to these vesicles and the reduced potential for drug 

degradation contributes to a sustained release profile. Moreover, the transformation of the drug 

into an amorphous state further optimizes skin moisture retention and enhances the drug's 

pharmacodynamic effects upon topical application. This multifaceted approach leverages the 

vesicular nature of proniosomes to improve drug delivery through the skin, offering an 

advanced alternative to conventional hydrophilic gel systems. 

Polynomial equations for dependent variables were derived, and their validity was 

checked by formulation counter-check formulations (CCNPG-1, CCNPG-2). 

 

𝑌1 =  84.326 +  2.143 𝑋1 − 3.855 𝑋2 −  4.948 𝑋1𝑋2 − 14.817 𝑋12 

−  5.402 𝑋22 (% 𝐸𝐸) 

(3) 

𝑌2 =  95.19 −  0.25 𝑋1 − 0.398 𝑋2 +  1.33 𝑋1𝑋2 − 2.95 𝑋12 +  0.105 𝑋22 (% 𝐷𝐷) 

(4) 

𝑌3 =  570.122 +  8.517 𝑋1 −  10.634 𝑋2 +  49.65 𝑋1𝑋2 +  124.883 𝑋12 

+  122.533 𝑋22 (𝑉𝑆) 

(5) 

𝑌4 =  1.242 −  0.036 𝑋1 − 0.0462 𝑋2 −  0.269 𝑋1𝑋2 +  0.477 𝑋12 

−  0.176 𝑋22 (𝑃𝐷𝐼)   

(6) 

X1, X2, X1X2, X1
2, and X2 were tested for their effects on %EE, %DD, VS, and PDI 

using the factor tool. The results of the study claimed that two variable factors, X1, X2, and X1
2, 

X2
2, show the curve in an additive fashion and parallel to one another. In addition to that, the 

coded factor claims that a synergistic effect was observed in binate amount of constrained 

independent variables such as X12 and X22, X1 and X2 alone could not effectively prolong 

the dependent variables. It was asserted by respective p-value and coded equation. 

Furthermore, the coded factor claims that a positive effect (Synergistic effect) was observed in 

amounts of constrained independent variables X1X2 (1.33, 49.65) for % drug diffuses and 

vesicular size. The coded factor claims that a negative effect (antagonistic effect) was observed 

in amounts of constrained independent variables X1X2 (–4.948 and -0.269) for % entrapment 
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efficiency and polydispersity index, respectively. The combination of X1 and X2 in the value 

of 90 mg and 60 mg, respectively (mid-level), provides an appropriate release of the drug 

compared to the other level of formulations. The interaction between Lutrol and cholesterol is 

responsible for predictive-dependent responses. The same has been witnessed in RSM Figure 

7-10. 

 

Figure 7. Response surface morphological plot for % entrapment efficiency. 

 

Figure 8. Response surface morphological plot for % drug diffused. 

 

Figure 9. Response surface morphological plot for vesicle size (nm). 
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Figure 10. Response surface morphological plot for polydispersity index. 

4. Conclusion 

The findings from this study suggest that employing the coacervation phase separation 

technique for crafting a proniosomal gel presents an efficient avenue for creating stable 

nebivolol hydrochloride proniosomal gel. Among various batches tested, the NPG5 batch stood 

out by showcasing superior entrapment efficiency and presenting vesicles with an ideal size. 

The morphological characteristics of these vesicles, including their spherical and uniform 

appearance, were verified through scanning electron microscopy (SEM) studies. Additionally, 

the zeta potential measurements indicated a high degree of stability for this formulation, 

minimizing the risk of vesicle aggregation. 

The optimized formulation of the proniosomal gel was also evaluated for its physical 

attributes, including clarity, appearance, and overall consistency, all of which met the desired 

standards. The performance of this formulation was further assessed through in vitro drug 

diffusion and skin permeation studies, which indicated an extended-release of the drug, 

underscoring the potential of proniosomes for enhancing transdermal delivery of nebivolol 

hydrochloride. These advantages mark a significant improvement over traditional gel-based 

drug delivery systems. Ultimately, the research concluded with the development of a viable 

and effective transdermal delivery system for nebivolol, demonstrating the promising 

application of proniosomal gels in medicinal formulations. 
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