Article

Volume 14, Issue 3, 2025, 178

https://doi.org/10.33263/LIANBS143.178

Degradation of Bentazone, Bispyribac-Sodium, Dinotefuran, and Imidacloprid in Different Types of Agricultural Soils under Laboratory Conditions by High Performance Liquid Chromatography

Mohamed R. Fouad 1,* (D), Abdallah E. Mohamed 2 (D)

- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Aflaton St., 21545, El-Shatby, Alexandria, Egypt
- Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
- * Correspondence: mohammed.riad@alexu.edu.eg

Received: 20.07.2024; Accepted: 15.07.2025; Published: 30.09.2025

Abstract: The degradation and persistence of two herbicides (bentazone-BTZ and bispyribac-sodium-BPS), and two insecticides (dinotefuran-DNF and imidacloprid-IMI) in alluvial soil, calcareous soil, and sandy soil were investigated following application at $100~\mu g/g$ soil at various time intervals, 0, 3, 7, 15, 30, and 60 days by HPLC. After 60 days of incubation, the percentages of BTZ, BPS, DNF, and IMI residues decreased to 7.13, 4.85, 53.71, and 7.51%, respectively, in alluvial soil; 8.58, 5.28, 17.68, and 12.56%, respectively in calcareous soil; and 10.53, 8.94, 53.09 and 13.84%, respectively in sandy soil of the initial residue. Compared with BTZ and BPS, DNF and IMI dissipated more slowly into the three soils. The dissipation of the tested pesticides was faster in the alluvial soil, followed by the calcareous soil, and then the sandy soil, except for DNF. The different orders of kinetics showed that the first-order model fit the experimental persistence data quite well with high R2 values and low $\Delta qe\%$ and SSE values. The half-lives were 15.27, 16.39, and 17.82 days for BTZ; 11.73, 13.10, and 16.20 days for BPS; 63.01, 23.42, and 75.34 days for DNF; and 14.87, 20.39, and 14.87 days for IMI in the alluvial soil, calcareous soil, and sandy soil, respectively.

Keywords: bentazone; bispyribac-sodium; dinotefuran; imidacloprid; half-life; HPLC; soil.

© 2025 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The authors retain copyright of their work, and no permission is required from the authors or the publisher to reuse or distribute this article, as long as proper attribution is given to the original source.

1. Introduction

Herbicide use is highly important in modern agriculture because it can kill or suppress the growth of vegetation and unwanted plants, thereby increasing the quantity and quality of crops [1-3]. Numerous mechanisms, including degradation, sorption, leaching, and plant uptake, as well as the impact of variables like crop type, herbicide application rate, climate, and agricultural methods, determine the destiny of herbicides sprayed to soil [4-8].

Bentazone (BTZ) is a selective contact (foliar) herbicide for the post-emergence control of annual broadleaf weeds and yellow nutsedges in a variety of crops, including alfalfa, soybeans, beans, peas, corn, sorghum, and peppers [9-13]. It also has activity on some perennial broadleaf weeds, such as Canada thistle and field bindweed [11,14,15]. It is considered one of

the most widely used herbicides in agriculture worldwide [13,15]. It is generally applied at rates of 1.0 to 2.2 kg/ha [9]. It is a weak acid that primarily exists in anionic form and functions as an inhibitor of photosynthetic electron transport [10,13]. Due to its widespread use, persistence, and propensity to leach from soil into groundwater, the herbicide BTZ raises environmental issues [16]. Weakly adsorbed in soil, it is primarily broken down by microbes [12]. In topsoils, this compound degrades relatively quickly [15]. According to reports on BTZ degradation, seven kinds of degradation products can be generated: N-methyl bentazone, 6-OH bentazone, 8-OH bentazone, 3-isopropenyl-2,2-dioxo-1H-2,1,3-benzothiadiazin-4-one, 3-(2-hydroxy-1-methyl-1-ethyl)-2,2-dioxo-1H-2,1,3-benzothiadiazin-4-one, and 2-amino-N-isopropylbenzamide [13,17]. N-methyl-bentazone is the most stable metabolite of BTZ in soil [18].

Bispyribac-sodium (BPS) is a highly effective and wide-spectrum selective pyrimidinyl carboxy herbicide. It was developed by Kumiai Chemical, Japan, for post-emergence control of cyperaceous and dicotyledonous grasses in rice [1,3,8,19-24]. It moves throughout the plant after being absorbed through the leaf surface [1,3,22]. Its primary method of action is to prevent acetolactate synthase (also known as acetohydroxy acid synthase) from doing its job, which impacts the production of branched-chain amino acids, an enzyme essential to plant growth [1,3,8,19,22]. Due to its high solubility in water and short half-life in soil, it is widely used in agriculture. Even at low quantities, it is a hazardous and enduring herbicide [19].

Worldwide, one of the most popular groups of pesticides, neonicotinoids, now account for more than one-quarter of the global pesticide market, and their annual production is approximately 600,000 tons [25-27]. Neonicotinoids have been developed since the early 1990s for nicotine structure research with the goal of boosting the effectiveness of these pesticides at low application rates while also enhancing their bioavailability and hastening their uptake by plants to replace older chemicals such as organochlorine, chlorinated hydrocarbons, organophosphorus, carbamate, pyrethroid, and several other chemical categories, which are more harmful to humans and the environment [26,28-32]. There are more than 290 crops on which neonicotinoids are approved for use in more than 120 countries [33] Because of their distinctive qualities, such as broad spectrum activity, low application rate, systemic and translaminar activity, significant residual activity, and distinct mode of action, these neonicotinoids have become widely accepted as a crucial part of integrated pest control strategies [34]. Although neonicotinoids better control soil-borne insects and piercing-sucking pests, information on their environmental persistence and potential ecological impacts is still inadequate [20,26,32]. Despite being effective insecticides with low toxicity, neonicotinoids have caused serious environmental concerns due to their long-term use [26].

The most recent generation of neonicotinoids, dinotefuran (DNF), has been widely employed to combat biting and sucking insects because of its strong insecticidal action, quick absorption, plant translocation, and environmental and human safety [27,35-37]. Currently, DNF is marketed and used in a variety of ways throughout the world [37]. Due to its extensive use, DNF will eventually leak into the environment. With a half-life of 50–100 days in the soil environment, DNF is relatively stable despite being safe for both people and the environment [37-40]. However, because DNF is a relatively new insecticide, a small amount of risk information is available. The primary processes via which DNF degrades in the environment are photolysis and microbiological degradation. 1-Methyl-3-(tetrahydro-3-furylmethyl) guanidium dihydrogen and 1-methyl-3-(tetrahydro-3-furylmethyl) urea are the main degradation products of DNF [37].

Approximately 120 nations have registered products containing imidacloprid (IMI) for use on more than 140 agricultural crops [41]. IMI is thought to be a somewhat polar substance with strong xylem mobility, making it appropriate for soil application and seed treatment [41-43]. It can be applied through tree injection, soil injection, topical application, foliar, broadcast, ground application as a liquid formulation, or granular, or as a seed treatment [42]. Depending on the soil type, pH, application of organic fertilizers, and presence or lack of ground cover, IMI may persist in the soil [41]. The primary IMI breakdown products in soil are 6-hydroxynicotinic acid, 6-chloronicotinic acid, and imidacloprid urea, and the final product is CO₂ [41].

Few studies have been conducted on the environmental persistence of BTZ, BPS, DNF, and IMI in post-application settings, according to a review of the literature [32,44]. Therefore, the main objective of this research was to investigate the degradation kinetics of the tested pesticides in alluvial soil, calcareous soil, and sandy soil to provide more data for understanding the pest-controlling (weeds and insects) effect in soil and evaluating their half-lives in different soils.

2. Materials and Methods

2.1. Pesticides.

4. . . .

Two herbicides, BTZ and BPS, and two insecticides, DNF and IMI, were tested. The physicochemical characteristics of the tested pesticides are summarized in Table 1.

Pesticide s	Bentazone	Bispyribac-sodium	Dinotefuran	Imidacloprid	
Structure	0	Na [*]	O= Z Z Z Z Z Z Z Z	CI NH NH	
Type	Herbicide	Herbicide	Insecticide	Insecticide	
Chemical family	Thiadiazine	Pyrimidinylthiobenzoate	Neonicotinoid	Neonicotinoid	
IUPAC name	2,2-dioxo-3-propan- 2-yl-1 <i>H</i> -2λ ⁶ ,1,3- benzothiadiazin-4- one	sodium 2,6-bis[(4,6-dimethoxypyrimidin-2-yl)oxy]benzoate	2-methyl-1-nitro-3- [(tetrahydro-3- furanyl) methyl] guanidine	N-{1-[(6-Chloro-3- pyridyl)methyl]-4,5- dihydroimidazol-2- yl}nitramide	
CAS Number	25057-89-0	125401-75-4	165252-70-0	138261-41-3	
Formula	$C_{10}H_{12}N_2O_3S$	$C_{19}H_{17}N_4NaO_8$	C ₇ H ₁₄ N ₄ O ₃	$C_9H_{10}ClN_5O_2$	
Water solubility (g/L)	0.50	733	39.83	0.51	
Tested material	Technical 99.0% a.i.	Technical 96.0% a.i.	Technical 97.0% a.i.	Technical 95.0% a.i.	
Supplied company	Kafr El-Zayat Pesticide Co.	AgroChem Co.	Egyptian Chemical Industries Co.	Chem Galaxy Co.	

Table 1. Physicochemical characteristics of the tested pesticides.

2.2. Soils.

The soils used in this investigation were collected from three different agricultural locations in Egypt. Soil samples were taken from the top 35cm. The collected soils were airdried in a laboratory at 23°C for seven days, after which they were crushed and passed through a sieve (2mm) [45-46]. The physicochemical properties of the selected soils are summarized in Table 2.

J	1 1		
Properties	Alluvial soil	Calcareous soil	Sandy soil
Texture class	Clay loam	Sandy loam	Sand
Coordinates (N/E)	311006/295804	304835/294536	173085/3367732
Water holding capacity (mL)	45	34	32
pН	8.3	8.2	8.5
EC (ds/m)	1.3	2.4	1.2
Organic matter content (%)	3.5	1.3	0.2
Total carbonate (%)	7.9	40.1	39.0
Total soluble cations (meq/L)	18.8	33.5	17.4
Total soluble anions (meg/L)	13.3	23.3	15.5

Table 2. Physicochemical properties of the soils used in this study.

2.3. Chemicals and solvents.

Sodium chloride, sodium acetate, anhydrous magnesium sulfate, formic acid, acetone, acetonitrile, methanol, and dimethylformamide were purchased from Algomhoria Chemical Co., Alexandria, Egypt. Water (HPLC grade), methanol (HPLC grade), and acetonitrile (HPLC grade) were purchased from Sigma Aldrich Co. (Spruce Street, Louis, MO, USA) [47].

2.4. Stock solution.

Stock solutions of BTZ, BPS, DNF, and IMI ($\mu g/mL$) were prepared in acetonitrile of HPLC grade. The working solution was diluted in HPLC-grade acetonitrile and HPLC-grade methanol at a ratio of 1:9 to reach the required final concentration ($\mu g/mL$). Prior to use, the standard solutions were kept at 4°C.

2.5. Application of the tested pesticides to soils.

BTZ, BPS, DNF, and IMI were applied at a concentration of 100 μ g a.i./g soil. Three replicates were made for each soil type, and the volume of each replicate was 300 g. The stock of pesticide was mixed with distilled water equal to 60% of the water-holding capacity of the soil. The solution was added to the soil to a final concentration of 100 μ g/g soil. All treatments were incubated throughout the experimental period at room temperature.

2.6. Extraction and cleanup.

At various intervals of 0, 3, 7, 15, 30, and 60 days, 10 g of the soil sample was taken into 25-mL centrifuge tubes. The soil samples were ground with a mixture of salts (composed of 0.15 g of sodium chloride, 0.35 g of sodium acetate, and 0.50 g of anhydrous magnesium sulfate) in a mortar for 3 min to induce phase separation and insecticide partitioning. The samples were placed in brown bottles and extracted with 20 ml of 0.1% formic acid: methanol: dimethylformamide (5:2:2:1) in acetone: acetone: acetonitrile. The samples were placed in glass tubes and shaken for 25 min in a water bath at 36°C. The tube was centrifuged at 4,000 rpm for 5 min and filtered using Whatman filter paper. To eliminate undesirable co-extractives, the organic layer was passed through a 15-mL centrifuge tube containing 0.13 g of magnesium sulfate and 0.07 g of activated charcoal. The tube was closed, shaken by hand for 90 s, and centrifuged for 4 min at 5000 rpm. The prepared sample was filtered through a 0.22-mm nylon syringe filter and transferred to an autosampler vial prior to HPLC analysis [48].

2.7. HPLC analysis.

All the soil samples were analyzed via HPLC. Separation was performed on a C18 column (250×4.6 mm, 5 μ m). The HPLC separation conditions were as follows: flow rate, 1 mL/min; injection volume, 20 μ L; column temperature, 25°C; and mobile phase, water: methanol: acetonitrile (5:3:2). The retention times under these separation conditions were 1.528 for BTZ, 1.586 for BPS, 8.033 for DNF, and 2.102 min for IMI (Figure 1).

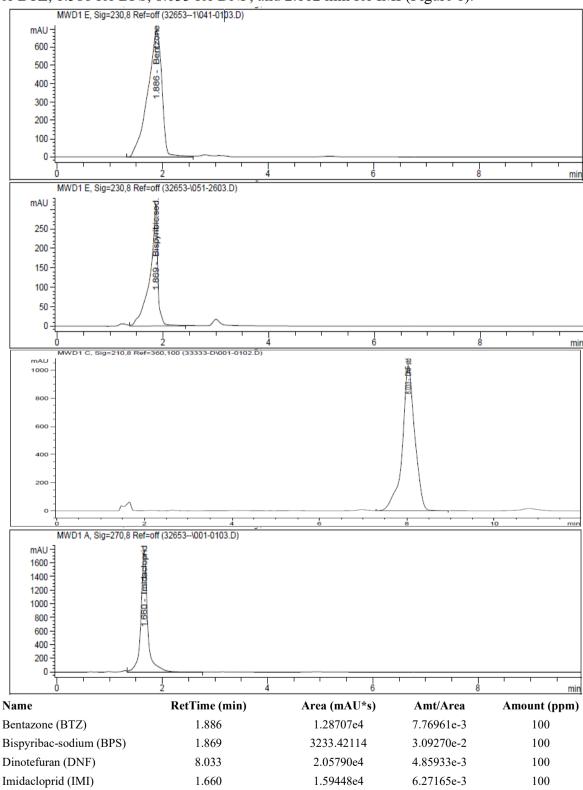


Figure 1. HPLC standard of the tested pesticides at 100 μg/mL.

2.8. Order kinetic models.

Six kinetic models were tested to investigate the effects of the tested pesticides on alluvial soil, calcareous soil, and sandy soil. The experimental values of the residue concentration for each pesticide in each soil were applied in the linearized equation of different models to determine the model parameters.

2.8.1. Zero order.

The zero-order equation is represented in Table 3, where $[A]_t$ = the residue amount of pesticide in the soil with time t; $[A]_0$ = the initial concentration; and k = the zero-order rate constant in units of M s⁻¹. Thus, a plot of $[A]_t$ versus t should have a linear relationship with the slope -k and the intercept of $[A]_0$. The half-life of the zero-order equation is dependent on both the rate constant and the initial concentration of the reactant, as shown in the following equation: $t_{1/2} = [A]_0/2k$.

Tuble of integrated rate equations of degradation kineties.										
Order	Differential equation	Integrated equation	Graph to be drawn	Intercept Slope		Half-life expression				
0	$-\frac{d[A]}{dt} = k[A]^0$	$[A]_t = [A]_0 - kt$	$[A]_t vs.t$	$[A]_0$	-k	$t_{1/2} = \frac{[A]_0}{2k}$				
1/2	$-\frac{d[A]}{dt} = k[A]^{1/2}$	$[A]_t^{1/2} = [A]_0^{1/2} - \frac{1}{2}kt$	$\left[A\right]_{t}^{1/2} vs. t$	$\left[A\right]_0^{1/2}$	$-\frac{1}{2}k$	$t_{1/2} = \frac{(2 - \sqrt{2})[A]_0^{1/2}}{k}$				
1	$-\frac{d[A]}{dt} = k[A]^1$	$ln[A]_t = ln[A]_0 - kt$	$ln[A]_t vs.t$	$ln[A]_0$	-k	$t_{1/2} = \frac{ln2}{k}$				
3/2	$-\frac{d[A]}{dt} = k[A]^{3/2}$	$\frac{1}{[A]_t^{1/2}} = \frac{1}{[A]_0^{1/2}} + \frac{1}{2}kt$	$\frac{1}{[A]_t^{1/2}} vs. t$	$\frac{1}{\left[A\right]_0^{1/2}}$	$+\frac{1}{2}k$	$t_{1/2} = \frac{2(\sqrt{2} - 1)}{k[A]_0^{1/2}}$				
2	$-\frac{d[A]}{dt} = k[A]^2$	$\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$	$\frac{1}{[A]_t}$ vs. t	$\frac{1}{[A]_0}$	+k	$t_{1/2} = \frac{1}{k[A]_0}$				
3	$-\frac{d[A]}{dt} = k[A]^3$	$\frac{1}{[A]_t^2} = \frac{1}{[A]_0^2} + 2kt$	$\frac{1}{[A]_t^2} vs. t$	$\frac{1}{[A]_0^2}$	+2 <i>k</i>	$t_{1/2} = \frac{3}{2k[A]_0^2}$				

Table 3. Integrated rate equations of degradation kinetics.

2.8.2. Halve (1/2) order.

The differential equation, integrated equation, and half-life equation are shown in Table 3, where k is a 1/2 order rate constant with units of $M^{3/2}$ s⁻¹. Thus, a plot of $[A]_t^{1/2}$ versus t should have a linear relationship with the slope $-\frac{1}{2}k$ and the intercept of $[A]_0^{1/2}$.

2.8.3. First order.

The first-order equation is expressed in Table 3. The integral form can be found by:

$$[A]_t = [A]_0^{-kt} \tag{1}$$

where the pesticide concentration at time t = 0 is $[A]_0$, the pesticide concentration at time t is $[A]_t$ and k is constant with units of s⁻¹. The concentrations are expressed in terms of their natural logarithm using the method above:

$$ln[A]_t = ln[A]_0 - kt (2)$$

2.8.4. Three-halves (3/2) order.

The nonlinear and linear forms of the 3/2 order equation are included in Table 3, where k is a constant with units of $M^{1/2}$ s⁻¹. Thus, a plot of $1/[A]_t^{1/2}$ versus t should have a linear relationship with the slope $+\frac{1}{2}k$ and the intercept of $1/[A]_0^{1/2}$.

2.8.5. Second order.

The second-order equation may be written in the form shown in Table 3, where k is a second-order rate constant with units of M^{-1} s⁻¹. Thus, a plot of $1/[A]_t$ versus t should have a linear relationship with the slope +k and intercept of $1/[A]_0$.

2.8.6. Third order.

The third-order model is given in Table 3, where k is a third-order rate constant with units of M^{-2} s⁻¹. Thus, a plot of $1/[A]_t^2$ versus t should have a linear relationship with the slope +2k and the intercept of $1/[A]_0^2$.

2.9. Statistical analysis.

The experimental data of the tested pesticides in the soils were analyzed using an HPLC software program and Microsoft Excel.

3. Results and Discussion

3.1. Residues and decay of the tested pesticides in soils.

The persistence of BTZ, BPS, DNF, and IMI in alluvial soil, calcareous soil, and sandy soil treated individually with 100 µg/g soil was studied under laboratory conditions. The soil incubated at 23°C was sampled at different times (0, 3, 7, 15, 30, and 60 days) and analyzed by HPLC. The residue percentages of the tested pesticides detected 60 days after application are shown in Table 4. The initial concentrations of BTZ, BPS, DNF, and IMI in the soils were 96.81, 99.31, 92.85, 99.98, and 95.57 μ g/g in the alluvial soil; 95.57, 98.99, 99.90, and 99.56 μg/g in the calcareous soil; and 92.89, 98.65, 100.00, and 99.00 μg/g in the sandy soil. After 60 days of incubation, the pesticide residue concentration decreased to 6.90, 4.82, 49.87, and 7.51 µg/g in the alluvial soil (7.13, 4.85, 53.71, and 7.51% of the initial residue remaining); 8.20, 5.23, 17.66, and $12.50 \mu g/g$ in the calcareous soil (8.58, 5.28, 17.68, and 12.56% of the initial residue remaining); and 9.78, 8.82, 53.09, and 13.70 μ g/g in the sandy soil (10.53, 8.94, 53.09, and 13.84% of the initial residue remaining), respectively. As in other studies, the residues of pesticides in soils decreased with time [42,48]. However, DNF and IMI dissipated slowly compared with BTZ and BPS into the three soils, as shown in Figure 2. The dissipation of DNF was faster in calcareous soil, followed by alluvial soil and sandy soil; unlike that of other pesticides, DNF dissipation was greater in alluvial soil, calcareous soil, and sandy soil. This is due to the high percentage of calcium carbonate in calcareous soil and its effect on the adsorption and degradation of DNF [44]. Previous studies have suggested that DNF can be a possible contaminant of soil [37]. Romeh et al reported that the average initial disposition of IMI in soil under tomato was 0.640 to 1.39 µg/g soil [49], which dissipated 14 days after spraying, while that under maize was 0.65 µg/g soil 30 days after sowing [50]. Residues of IMI were nondetectable in soil samples at harvest in cotton, rice, and mustard crops [51,52].

Table 4. Residue percentages of pesticides in soils at different time intervals by HPLC.

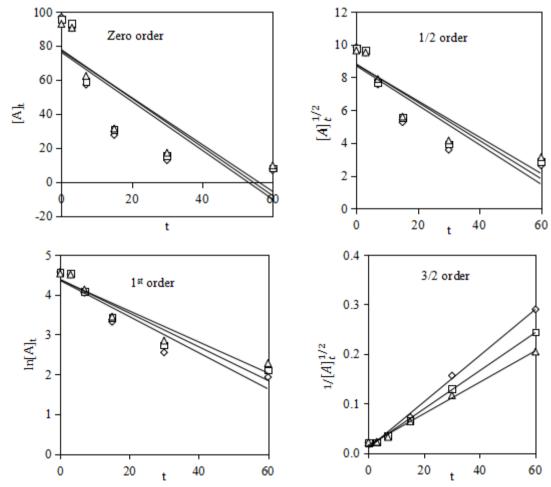

Time	Alluvial soil				Calcareous soil				Sandy soil				
(day)	BTZ	BPS	DNF	IMI	BTZ	BPS	DNF	IMI	BTZ	BPS	DNF	IMI	
0	96.81	99.31	92.85	99.98	95.57	98.99	99.9	99.5	92.8	98.6	100.0	99.0	
3	90.32	96.32	85.83	98.43	93.06	95.75	98.8 8	87.8 0	9 90.5 9	5 95.6 2	92.04	97.4 2	
7	57.17	82.35	85.28	87.94	59.04	69.75	96.1	78.4 5	62.3	76.5 4	79.68	91.3 7	
15	27.61	45.10	75.52	79.57	30.81	24.40	90.3	59.9 7	31.4	32.5 0	74.20	76.6 5	
30	12.81	3.96	53.07	20.43	15.40	8.12	52.8 4	40.0	17.2 1	15.4 8	73.64	53.3	
60	6.90	4.82	49.87	7.51	8.20	5.23	17.6 6	12.5 0	9.78	8.82	53.09	13.7 0	
Mean	48.60	55.31	73.74	65.64	50.35	50.37	75.9 5	63.0 5	50.7 0	54.6 0	78.77	71.9 1	
80 (los slot) pure 40 (los slot)									60				
100 % .													
		Di	notefura	n		Im	nidaclop	rid					
— → Alluvial soil – □						– Calcare	ous soil			∆ Sa	andy soil		

Figure 2. Residual curves of the tested pesticides in soils.

3.2. Comparison of the tested order kinetic models.

The persistence kinetics of BTZ, BPS, DNF, and IMI in alluvial soil, calcareous soil, and sandy soil were analyzed using different order kinetic models. The validity of the order models was tested based on four values: the correlation coefficient (R^2), the normalized standard deviation ($\Delta qe\%$), which were used to compare the experimental and calculated data, and the summed squared error (SSE). A relatively high correlation coefficient (R^2) close to or equal to 1, low $\Delta qe\%$, and low SSE indicate that the tested model successfully describes the kinetics of pesticide persistence. The order equation plots of the persistence kinetics of the tested pesticides in soils revealed that linear relationships existed between $[A]_t$ and time of zero order, $[A]_t^{1/2}$ and time of 1/2-order, $[n[A]_t$ and time of first-order, $[n[A]_t^{1/2}]_t$ and time

of 3/2-order, $1/[A]_t$ and the time of the second-order, and $1/[A]_t^2$ and time of the third order, each soil type is represented in Figures 3, 4, 5, and 6. The order equation parameters; $[A]_0$, $[A]_0^{1/2}$, $ln[A]_0$, $1/[A]_0^{1/2}$, $1/[A]_0$, $1/[A]_0^2$, and k were calculated from the intercept and slope of the linear plots and are reported in Table 5. When comparing the k constant in the different reaction orders, a clear decrease was observed in the values obtained with increasing reaction order (i.e., an inverse relationship between k and the reaction order). The obtained k values were 0.74 to 1.71, 1.39 to 1.59, and 0.67 to 1.54 for zero-order, and 0.000005 to 0.0009, 0.000004 to 0.0002, and 0.000004 to 0.0002 for third-order in alluvial soil, calcareous soil, and sandy soil of four tested pesticides, respectively. According to the correlation coefficient (R^2) values, the first-order model is suitable for the persistence of the tested pesticides in soils because the R² ranges from 0.79 to 0.96 in alluvial soil, 0.87 to 1.00 in calcareous soil, and 0.91 to 0.96 in sandy soil. In contrast, the values of Δqe (%) and SSE were lower in the ranges of 4.97-36.41 and 0.50-18.71, respectively, except for those of BPS in the alluvial and calcareous soils. Additionally, when comparing the results of persistence kinetics obtained from laboratory experiments of the tested pesticides with the results calculated from the firstorder equation in three soils, the results were identical.

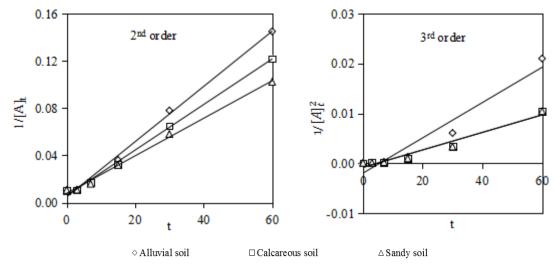
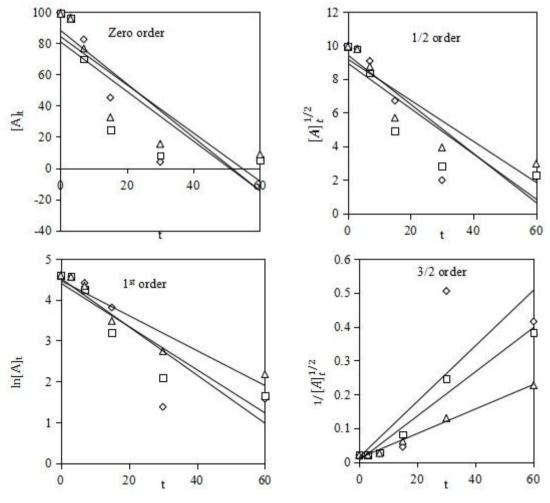



Figure 3. Plots of different orders of rate for the degradation of bentazone in soil.

In general, the results showed that the first-order model, followed by the 1/2-order kinetic model, fit the experimental persistence data quite well, with high values of R^2 and low values of $\Delta qe\%$ and SSE. Accordingly, the first-order equation is most suitable for describing the persistence kinetics of BTZ, BPS, DNF, and IMI in alluvial soil, calcareous soil, and sandy soil. The first-order kinetic equation is commonly used for describing the persistence kinetics of various pesticides in soil [48], and it is the best model for describing the persistence kinetics of BTZ [12,14,18], BPS [8], DNF [31,33], and IMI [31,33,41-42].

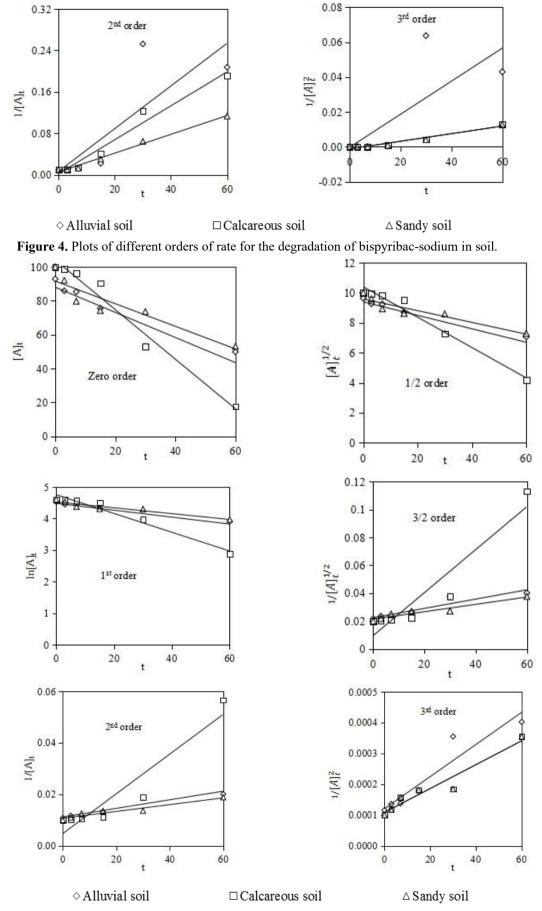


Figure 5. Plots of different orders of rate for the degradation of dinotefuran in soil.

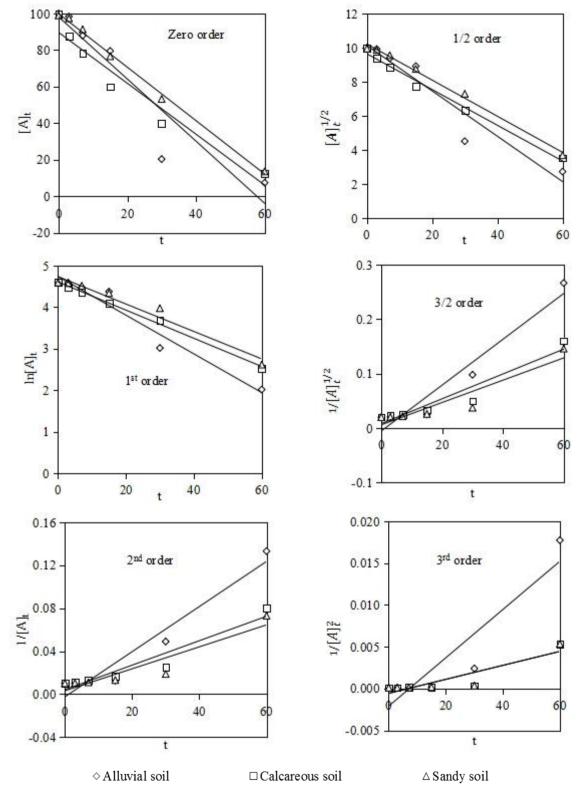


Figure 6. Plots of different order rates for the degradation of imidacloprid in soil.

Table 5. Kinetic parameters for the degradation of the tested pesticides into soils.

0.1.	Parameters			able 5. Kinetic ivial soil	1	Calcareous soil				Sandy soil			
Order		BTZ	BPS	DNF	IMI	BTZ	BPS	DNF	IMI	BTZ	BPS	DNF	IMI
	$[A]_0$	76.15	88.09	87.92	98.21	77.71	80.80	103.94	89.72	77.07	84.15	91.54	99.90
	K	1.44	1.71	0.74	1.70	1.43	1.59	1.46	1.39	1.38	1.54	0.67	1.46
0	\mathbb{R}^2	0.70	0.78	0.86	0.89	0.72	0.70	0.97	0.95	0.73	0.75	0.86	1.00
	$\Delta qe(\%)$	138.65	412.30	12.41	89.13	111.90	226.03	8.42	25.42	92.82	115.83	7.41	5.44
	SEE	109.64	359.96	4.18	52.94	86.26	202.31	2.10	7.09	70.34	95.90	2.26	0.40
	$[A]_0^{1/2}$	8.70	8.70	9.39	10.13	8.78	8.78	10.39	9.64	8.81	8.81	9.58	10.22
	K	0.24	0.24	0.09	0.27	0.22	0.22	0.20	0.21	0.23	0.23	0.08	0.21
1/2	R ²	0.81	0.81	0.87	0.93	0.82	0.82	0.98	0.99	0.82	0.82	0.88	0.99
	Δqe(%)	89.63	83.71	95.70	91.86	90.27	85.79	94.73	93.48	91.43	91.13	95.96	94.14
	SEE	263.32	304.39	408.15	362.59	272.92	273.58	421.96	346.45	275.20	298.63	437.71	398.32
	$ln[A]_0$	4.36	4.52	4.48	4.74	4.38	4.41	4.75	4.61	4.37	4.47	4.52	4.74
	K	0.05	0.06	0.01	0.05	0.04	0.05	0.03	0.03	0.04	0.04	0.01	0.03
1	\mathbb{R}^2	0.91	0.79	0.87	0.96	0.92	0.87	0.96	1.00	0.91	0.91	0.91	0.96
_	$\Delta qe(\%)$	36.41	134.27	10.01	22.72	31.42	57.56	13.01	4.97	30.59	35.20	6.82	14.13
	SEE	18.71	46.49	2.78	11.94	16.08	28.78	6.68	0.50	15.42	17.81	1.93	5.86
	$1/[A]_0^{1/2}$	0.01	0.01	0.02	0.005	0.01	0.01	0.01	0.008	0.02	0.02	0.02	0.006
	K	0.01	0.009	0.001	0.008	0.01	0.008	0.003	0.005	0.01	0.006	0.001	0.004
3/2	\mathbb{R}^2	1.00	1.00	0.89	0.94	1.00	1.00	0.90	0.92	1.00	1.00	0.93	0.87
_	$\Delta qe(\%)$	85.26	78.83	91.25	88.69	86.16	80.67	90.47	89.07	86.69	86.39	91.78	89.81
	SEE	236.28	277.54	292.83	327.16	246.83	247.73	301.20	308.98	250.35	273.72	314.70	354.18
	$1/[A]_0$	0.005	0.007	0.011	-0.003	0.006	0.002	0.005	0.004	0.008	0.006	0.011	0.003
	K	0.002	0.004	0.0002	0.002	0.002	0.003	0.0008	0.001	0.002	0.002	0.0001	0.001
2	\mathbb{R}^2	1.00	0.69	0.89	0.94	1.00	0.97	0.90	0.92	1.00	0.99	0.93	0.87
	∆qe(%)	50.39	66.62	8.78	231.97	34.05	145.64	58.17	68.93	18.76	38.69	9.17	108.29
	SEE	121.03	99.82	2.31	2675.31	54.52	1036.49	161.82	223.61	15.39	71.28	2.94	567.30
<u> </u>	$1/[A]_0^2$	-0.002	0.000	0.0001	-0.0003	-0.001	-0.001	0.0001	-0.0001	-0.001	-0.001	0.0001	-0.0001
	K	0.0004	0.0009	0.000005	0.0003	0.0002	0.0002	0.000004	0.0001	0.0002	0.0002	0.000004	0.0001
3	\mathbb{R}^2	0.94	0.58	0.90	0.86	0.94	0.96	0.94	0.81	0.96	0.96	0.94	0.81
	∆qe(%)	61.29	77.74	14.07	78.24	52.24	41.86	62.08	59.50	55.57	49.78	15.87	67.02
	SEE	66.95	170.35	6.55	180.78	54.65	34.68	41.61	87.21	58.15	48.93	8.31	132.74

$$\Delta q_e(\%) = 100 \sqrt{\frac{\sum [(q_{e(exp)} - q_{e(cal)})/q_{e(exp)}]^2}{N-1}}$$
(3)

(4)

3.3. Assessment of half-life values.

Pesticide persistence is often measured in terms of its half-life (the period of time it takes for its concentration to drop to 50%). The calculated half-lives of BTZ, BPS, DNF and IMI were 15.27, 11.73, 63.01 and 14.87 days, respectively, for the alluvial soil; 16.39, 13.10, 23.42 and 20.39 days of respectively, for the calcareous soil; and 17.82, 16.20, 75.34 and 21.00 days, respectively, for the sandy soil when they were applied at a rate of 100 µg/g soil (Table 6). The half-life values vary depending on the soil type and organic matter content [53-55]. The FOOTPRINT Pesticide Properties Database 12 reported that BTZ has a half-life in soil of 45 days in the laboratory at 20°C, 4 to 21 days in field conditions [56], 8 to 102 days in laboratory conditions according to Paszko and Muszyński [12], 8 to 35 days in the laboratory and 3 to 31 days in field studies for topsoils according to Paszko and Spadotto [15]. BPS is considered partially soluble in water and has a half-life of 60 days [23]. Neonicotinoids were previously observed to degrade more quickly in soils with cover crops than in bare soils [42]. The halflives of DNF in soils under laboratory conditions were less than those at 72 days [57], but under field conditions, they were 9.34 to 11.4 days [58]. Shenggan et al in a study on the residue dynamics of IMI in rice, reported that the half-life of IMI in soil ranged from 12 to 24 days [59].

		1		
	Pesticide	Alluvial soil	Calcareous soil	Sandy soil
	BTZ	15.27	16.39	17.82
	BPS	11.73	13.10	16.20
	DNF	63.01	23.42	75.34
•	IMI	14.87	20.39	21.00

Table 6. Half-lives of the tested pesticides in soils fitted with a first-order kinetic model.

4. Conclusions

The initial pesticide concentrations ranged from 92.85 to 99.98 μ g/g in the alluvial soil, 95.57 to 99.90 μ g/g in the calcareous soil and 92.89 to 100.00 μ g/g in the sandy soil, while after 60 days of incubation, the pesticide concentrations decreased to 4.82-49.87 μ g/g in the alluvial soil, 5.23-17.66 μ g/g in the calcareous soil and 8.82-53.09 μ g/g in the sandy soil. BTZ and BPS dissipated faster than IMI and DNF in the three soils. The dissipation of DNF was faster in calcareous soil, followed by that in alluvial soil and sandy soil; unlike in the other tested pesticides, DNF dissipation was greater in alluvial soil, calcareous soil, and sandy soil. The persistence kinetics of BTZ, BPS, DNF, and IMI in the tested soils were analyzed using different orders of kinetic models (zero-order, 1/2-order, first-order, 3/2-order, second-order, and third-order). The results showed that the first-order model, followed by the 1/2-order kinetic model, fit the experimental persistence data quite well, with high R2 values and low Δ qe% and SSE values. The half-life ranged from 15.27 to 17.82 days for BTZ, 11.73 to 16.20 days for BPS, 23.42 to 75.34 days for DNF, and 14.87 to 21.00 days for IMI in the tested soils according to the first-order equation.

Author Contributions

Conceptualization, A.E.M.; methodology, M.R.F.; data curation, M.R.F. and A.E.M.; investigation, A.E.M.; resources, M.R.F.; writing—review and editing, M.R.F.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Acknowledgments

This research has no acknowledgment.

Conflicts of Interest

None.

References

- 1. Bera, S.; Ghosh, R. K. Soil physico-chemical properties and microflora as influenced by bispyribac sodium 10% SC in transplanted kharif rice. *Rice Science* **2013**, *20*, 298-302, https://doi.org/10.1016/S1672-6308(13)60148-1.
- 2. Iwakami, S.; Uchino, A.; Kataoka, Y.; Shibaike, H.; Watanabe H.; Inamura, T. Cytochrome P450 genes induced by bispyribac-sodium treatment in a multiple-herbicide-resistant biotype of Echinochloa phyllopogon. *Pest Management Science* **2014**, *70*, 549-558, https://doi.org/10.1002/ps.3572.
- 3. Kalsi, N.K.; Kaur, P. Dissipation of bispyribac sodium in aridisols: Impact of soil type, moisture and temperature. *Ecotoxicology and Environmental Safety* **2019**, *170*, 375-382, https://doi.org/10.1016/j.ecoenv.2018.12.005.
- 4. El-Aswad, A.F.; Mohamed, A.E.; Fouad, M.R. Investigation of dissipation kinetics and half-lives of fipronil and thiamethoxam in soil under various conditions using experimental modeling design by Minitab software. *Scientific Reports* **2024**, *14*, 5717, https://doi.org/10.1038/s41598-024-56083-5.
- 5. Fouad, M. R.; El-Aswad, A. F.; Aly, M. I.; Badawy, M. E. T. Environmental impact of biochar and wheat straw on mobility of dinotefuran and metribuzin into soils. *Asian Journal of Agriculture* **2024**, *8*, 57-63, https://doi.org/10.13057/asianjagric/g080108.
- 6. Fouad, M. R.; Abd-Eldaim, F. A.; Alsehli, B. R.; Mostafa, A. S. Non-competitive and competitive sorption of imidacloprid and KNO₃ onto soils and their effects on the germination of wheat plants (*Triticum aestivum L.*). *Global NEST Journal* **2024**, *26*, 1-8, https://doi.org/10.30955/gnj.005670.
- 7. Fouad, M. R.; El-Aswad, A. F.; Aly, M. I. Tracking movement dynamic of fenitrothion and thiobencarb in rice paddy using a field lysimeters at different levels of soil depth. *Current Chemistry Letters* **2025**, *14*, 633-642, https://www.scopus.com/pages/publications/105007813741.
- 8. Zhang, Q.; Zhao, Y.; Fan, S.; Bai, A.; Li, X.; Pan, C. Dissipation and residues of bispyribac-sodium in rice and environment. *Environmental Monitoring and Assessment* **2013**, *185*, 9743-9749, https://doi.org/10.1007/s10661-013-3287-z.
- 9. Boivin, A.; Cherrier, R.; Schiavon, M. Bentazone adsorption and desorption on agricultural soils. *Agron. Sustain. Dev.* **2005**, *25*, 309-315, https://doi.org/10.1051/agro:2005011.
- 10. Mir, N.A.; Haque, M.M.; Khan, A.; Muneer, M.; Vijayalakshmi, S. Photocatalytic degradation of herbicide Bentazone in aqueous suspension of TiO₂: mineralization, identification of intermediates and reaction pathways. *Environmental Technology* **2014**, *35*, 407-415, https://doi.org/10.1080/09593330.2013.829872.
- 11. Romero, E.; Sánchez-Rasero, F.; Peña, A.; de la Colina, C.; Dios, G. Bentazone leaching in Spanish soils. *Pesticide Science* **1996**, *47*, 7-15, https://doi.org/10.1002/(SICI)1096-9063(199605)47:1%3C7::AID-PS377%3E3.0.CO;2-Z.

- 12. Paszko, T.; Muszyński, P. Degradation rates of alachlor, atrazine and bentazone in the profiles of Polish Luvisols. *International Agrophysics* **2017**, *31*, 401-410, https://doi.org/10.1515/intag-2016-0053.
- 13. Song, S.; Zhang, C.; Chen, Z.; Wei, J.; Tan, H.; Li, X. Hydrolysis and photolysis of bentazone in aqueous abiotic solutions and identification of its degradation products using quadrupole time-of-flight mass spectrometry. *Environmental Science and Pollution Research* **2019**, *26*, 10127-10135, https://doi.org/10.1007/s11356-019-04232-z.
- 14. Ke-Bin, L.I.; Cheng, J.T.; Xiao-Fang, W.A.N.G.; Ying, Z.H.O.U.; Wei-Ping, L.I. U. Degradation of herbicides atrazine and bentazone applied alone and in combination in soils. *Pedosphere* **2008**, *18*, 265-272, https://doi.org/10.1016/S1002-0160(08)60016-8.
- 15. Paszko, T.; Spadotto, C.A. Modeling of Bentazone Leaching in Soils with Low Organic Matter Content. *Int. J. Environ. Res. Public Health* **2022**, *19*, 7187, https://doi.org/10.3390/ijerph19127187.
- 16. Rodríguez Cruz, M. S.; Jones, J. E.; Bending, G. D. Study of the spatial variation of the biodegradation rate of the herbicide bentazone with soil depth using contrasting incubation methods. *Chemosphere* **2008**, *73*, 1211-1215, http://dx.doi.org/10.1016/j.chemosphere.2008.07.044.
- 17. García-Vara, M.; Hu, K.; Postigo, C.; Olmo, L.; Caminal, G.; Sarrà, M.; de Alda, M. L. Remediation of bentazone contaminated water by Trametes versicolor: characterization, identification of transformation products, and implementation in a trickle-bed reactor under non-sterile conditions. *Journal of Hazardous Materials* **2021**, *409*, 124476, https://doi.org/10.1016/j.jhazmat.2020.124476.
- 18. Schuhmann, A.; Klammler, G.; Weiss, S.; Gans, O.; Fank, J.; Haberhauer, G.; Gerzabek, M. H. Degradation and leaching of bentazone, terbuthylazine and S-metolachlor and some of their metabolites: A long-term lysimeter experiment. *Plant, Soil & Environment* **2019**, *65*, 273-281, http://dx.doi.org/10.17221/803/2018-PSE.
- 19. Ahmad, F.; Anwar, S.; Firdous, S.; Da-Chuan, Y.; Iqbal, S. Biodegradation of bispyribac sodium by a novel bacterial consortium BDAM: Optimization of degradation conditions using response surface methodology. *Journal of Hazardous Materials* **2018**, *349*, 272-281, https://doi.org/10.1016/j.jhazmat.2017.12.065.
- 20. El-Aswad, A.F.; Fouad, M.R.; Aly, M.I. Experimental and modeling study of the fate and behavior of thiobencarb in clay and sandy clay loam soils. *International Journal of Environmental Science and Technology* **2024**, *21*, 4405-4418, https://doi.org/10.1007/s13762-023-05288-8.
- 21. Kumar, S.; Rana, S. S.; Chander, N. Mixed weed flora management by bispyribac-sodium in transplanted rice. **2013**, *45*, 151-155.
- 22. Kumar, U.; Behera, S.; Saha, S.; Das, D.; Guru, P.K.; Kaviraj, M.; Nayak, A.K. Non-target effect of bispyribac sodium on soil microbial community in paddy soil. *Ecotoxicology and Environmental Safety* **2020**, *189*, 110019, https://doi.org/10.1016/j.ecoenv.2019.110019.
- Toni, C.; De Menezes, C.C.; Loro, V.L.; Clasen, B.E.; Cattaneo, R.; Santi, A.; Pretto, A.; Zanella, R.;
 Leitemperger, J. Oxidative stress biomarkers in Cyprinus carpio exposed to commercial herbicide bispyribac-sodium. *Journal of Applied Toxicology* 2010, 30, 590-595, https://doi.org/10.1002/jat.1530.
- 24. Yadav, D.B.; Yadav, A.; Punia, S.S. Evaluation of bispyribac-sodium for weed control in transplanted rice. *Indian Journal of Weed Science* **2009**, *41*, 23-27.
- Abd-Eldaim, F. A.; Farroh, K. Y.; Safina, F. S.; Fouad, M. R.; Darwish, O. S.; Emam, S. S.; Abdel-Halim, K. Y. Phytotoxic effects of imidacloprid and its nano-form on the cucumber plants under greenhouse condition and their toxicity on HepG2 cell line. *Archives of Phytopathology and Plant Protection* 2023, 56, 1467-1486, https://doi.org/10.1080/03235408.2023.2289218.
- 26. Pang, S.; Lin, Z.; Zhang, W.; Mishra, S.; Bhatt, P.; Chen, S. Insights into the microbial degradation and biochemical mechanisms of neonicotinoids. *Frontiers in microbiology* **2020**, *11*, 868, https://doi.org/10.3389/fmicb.2020.00868.
- 27. Yokoyama, S.; Ito, M.; Nagasawa, S.; Morohashi, M.; Ohno, M.; Todate, Y.; Kawata, K. Runoff and degradation of aerially applied dinotefuran in paddy fields and river. *Bulletin of environmental contamination and toxicology* **2015**, *94*, 796-800, https://doi.org/10.1007/s00128-015-1554-0.
- 28. Abdel-Raheem, S.A.; Fouad, M.R.; Gad, M.A.; El-Dean, A.M.K.; Tolba, M. S. Environmentally green synthesis and characterization of some novel bioactive pyrimidines with excellent bioefficacy and safety profile towards soil organisms. *Journal of Environmental Chemical Engineering* **2023**, *11*, 110839, https://doi.org/10.1016/j.jece.2023.110839.
- 29. Fouad, M.R.; El-Aswad, A.F.; Badawy, M.E. I.; Aly, M. I. Effect of pH variation and temperature on pesticides sorption characteristics in calcareous soil. *Current Chemistry Letters* **2024**, *13*, 141-150, http://dx.doi.org/10.5267/j.ccl.2023.8.002.

- 30. Fouad, M.R.; El-Aswad, A.F.; Badawy, M.E.I.; Aly, M.I. Impact of organic amendments addition to sandy clay loam soil and sandy loam soil on leaching process of chlorantraniliprole insecticide and bispyribac-sodium herbicide. *Current Chemistry Letters* **2024**, *13*, 277-286, http://dx.doi.org/10.5267/j.ccl.2023.12.004.
- 31. Kobashi, K.; Harada, T.; Adachi, Y.; Mori, M.; Ihara, M.; Hayasaka, D. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. *Ecotoxicology and Environmental Safety* **2017**, *138*, 122-129, https://doi.org/10.1016/j.ecoenv.2016.12.025.
- 32. Kurwadkar, S.; Evans, A.; DeWinne, D.; White, P.; Mitchell, F. Modeling photodegradation kinetics of three systemic neonicotinoids—dinotefuran, imidacloprid, and thiamethoxam—in aqueous and soil environment. *Environmental Toxicology and Chemistry* **2016**, *35*, 1718-1726, https://doi.org/10.1002/etc.3335.
- 33. Li, Y.; Li, Y.; Bi, G.; Ward, T. J.; Li, L. Adsorption and degradation of neonicotinoid insecticides in agricultural soils. *Environmental Science and Pollution Research* **2023**, *30*, 47516-47526, https://doi.org/10.1007/s11356-023-25671-9.
- 34. Kurwadkar, S. T.; Dewinne, D.; Wheat, R.; McGahan, D. G.; Mitchell, F. L. Time dependent sorption behavior of dinotefuran, imidacloprid and thiamethoxam. *Journal of Environmental Science and Health, Part B* **2013**, *48*, 237-242, https://doi.org/10.1080/03601234.2013.742412.
- 35. El-Aswad, A.F.; Aly, M.I.; Fouad, M.R.; Badawy, M.E. Adsorption and thermodynamic parameters of chlorantraniliprole and dinotefuran on clay loam soil with difference in particle size and pH. *Journal of Environmental Science and Health, Part B* **2019**, *54*, 475-488, https://doi.org/10.1080/03601234.2019.1595893.
- 36. El-Aswad, A.F.; Fouad, M.R.; Badawy, M.E.I.; Aly, M.I. Modeling study of adsorption isotherms of chlorantraniliprole and dinotefuran on soil. *Current Chemistry Letters* **2024**, *12*, 503-514, https://doi.org/10.5267/j.ccl.2024.2.008.
- 37. Liu, T.; Zhang, X.; Wang, X.; Chen, D.; Li, Y.; Wang, F. Comparative toxicity and bioaccumulation of two dinotefuran metabolites, UF and DN, in earthworms (*Eisenia fetida*). *Environmental Pollution* **2018**, 234, 988-996, https://doi.org/10.1016/j.envpol.2017.12.007.
- 38. Fouad, M. R.; El-Aswad, A. F.; Badawy, M. E.; Aly, M. I. Effect of soil organic amendments on sorption behavior of two insecticides and two herbicides. *Current Chemistry Letters* **2024**, 13(2), 377-390, https://doi.org/10.5267/j.ccl.2023.10.007.
- 39. Fouad, M.R.; Aly, M.I.; El-Aswad, A.F.; Badawy, M.E.I. Effect of particles size on adsorption isotherm of chlorantraniliprole, dinotefuran, bispyribac-sodium, and metribuzin into sandy loam soil. *Current Chemistry Letters* **2024**, *13*, 61-72, http://dx.doi.org/10.5267/j.ccl.2023.8.009.
- 40. Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M. C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. *Environment international* **2015**, *74*, 291-303, https://doi.org/10.1016/j.envint.2014.10.024.
- 41. Sharma, S.; Singh, B. Metabolism and persistence of imidacloprid in different types of soils under laboratory conditions. *International Journal of Environmental Analytical* **2014**, *94*, 1100-1112, https://doi.org/10.1080/03067319.2014.940341.
- 42. Akoijam, R.; Singh, B. Metabolic degradation of imidacloprid in paddy field soil. *Environmental Monitoring and Assessment* **2014**, *186*, 5977-5984, https://doi.org/10.1007/s10661-014-3833-3.
- 43. Mohapatra, S.; Deepa, M.; Lekha, S.; Nethravathi, B.; Radhika, B.; Gourishanker, S. Residue dynamics of spirotetramat and imidacloprid in/on mango and soil. *Bulletin of environmental contamination and toxicology* **2012**, *89*, 862-867, https://doi.org/10.1007/s00128-012-0762-0.
- 44. El-Aswad, A.F.; Fouad, M.R.; Badawy, M.E.; Aly, M.I. Effect of calcium carbonate content on potential pesticide adsorption and desorption in calcareous soil. *Communications in Soil Science and Plant Analysis* **2023**, *54*, 1379-1387, https://doi.org/10.1080/00103624.2022.2146131.
- 45. Fouad, M. R.; El-Aswad, A. F.; Aly, M. I. Mathematical models of the adsorption-desorption kinetics of fenitrothion in clay soil and sandy clay loam soil. *Current Chemistry Letters* **2024**, *13*, 641-654, http://dx.doi.org/10.5267/j.ccl.2024.6.002.
- 46. El-Aswad, A.F.; Fouad, M.R.; Aly, M. I. Assessment of the acute toxicity of agrochemicals on earthworm (*Aporrectodea caliginosa*) using filter paper contact and soil mixing tests. *Asian Journal of Agriculture* **2023**, 7, 14-19, https://doi.org/10.13057/asianjagric/g070103.
- 47. Abd Ul-Malik, M. A.; Abdou, A.; Fouad, M.R.; Alkamali, A. S. N.; Abdel-Raheem, S. A. A. Synthesis, spectral characterization and molecular docking studies of some thiocarbohydrazide-based Schiff bases

- with pyrazole moiety as potential anti-inflammatory agents. *Current Chemistry Letters* **2024**, *13*, 683-694, http://dx.doi.org/10.5267/j.ccl.2024.5.002.
- 48. Badawy, M.E.; El-Aswad, A.F.; Aly, M.I.; Fouad, M.R. Effect of different soil treatments on dissipation of chlorantraniliprole and dehydrogenase activity using experimental modeling design. *International Journal of Advanced Research in Chemical Science* 2017, 4, 7-23, http://dx.doi.org/10.20431/2349-0403.0412002.
- 49. Romeh, A.A.; Mekky, T.M.; Ramadan, R.A.; Hendawi, M.Y. Dissipation of profenofos, imidacloprid and penconazole in tomato fruits and products. *Bulletin of environmental contamination and toxicology* **2009**, *83*, 812-817, https://doi.org/10.1007/s00128-009-9852-z.
- 50. Donnarumma, L.; Pulcini, P.; Pochi, D.; Rosati, S.; Lusco, L.; Conte, E. Preliminary study on persistence in soil and residues in maize of imidacloprid. *Journal of Environmental Science and Health, Part B* **2011**, 46, 469-472.
- 51. Dikshit, A.K.; Singh, V.S.; Sharma, R.; Palta, R. K.; Kumar, R. Residue studies and risk assessment of imidacloprid from 70 WG formulation on rice and cotton crops. *Pestology* **2005**, *29*, 24-29.
- 52. Gopal, M.; Mukherjee, I.; Chander, S. Behaviour of β-cyfluthrin and imidacloprid in mustard crop: Alternative insecticide for aphid control. *Bull. Environ. Contam. Toxicol.* **2002**, *68*, 406-411, https://doi.org/10.1007/s001280269.
- 53. Aly, M. I.; Fouad, M. R.; Abou-Elnasr, H. S.; El-Aswad, A. F. Comparison of Dissipation Kinetics and Residual Behaviour for Fenitrothion Insecticide and Thiobencarb Herbicide in Clay Soil. *Alexandria Journal of Agricultural Sciences* **2021**, *66*, 1-11, https://dx.doi.org/10.21608/alexja.2021.174541.
- 54. Mostafa, A. S.; Nassar, D. M.; Abdul-Malik, M. A.; Abdel-Halim, K. Y.; Mohamed, A. E.; Alsehli, B. R.; Fouad, M. R. Competitive adsorption/desorption of dimethoate pesticide and phosphorus fertilizer in texturally different soils. *Soil & Environment* **2025**, *44*, 1-7.
- 55. Fouad, M. R.; El-Aswad, A. F.; Aly, M. I. Uptake and Translocation of Fenitrothion and Thiobencarb in Rice Plant under Laboratory and Filed Conditions. *Korean Journal of Environmental Agriculture* **2024**, 43, 188-199. https://doi.org/10.5338/KJEA.2024.43.18.
- 56. Coppola, L.; Pilar Castillo, M. D.; Vischetti, C. Degradation of isoproturon and bentazone in peat-and compost-based biomixtures. *Pest Management Science* **2011**, *67*, 107-113, https://doi.org/10.1002/ps.2040.
- 57. Yoshimura, Y.; Ootake, T.; Kasuya, M. Adsorption and degradation of four neonicotinoid insecticides in yellow soil, and accelerated degradation of dinotefuran through the application of organic matter. *Research Bulletin of the Aichi Agricultural Research Center* **2014**, 15-22. http://www.pref.aichi.jp/nososi/.
- 58. Chen, X.; Liu, X.; Dong, B.; Hu, J. Simultaneous determination of pyridaben, dinotefuran, DN and UF in eggplant ecosystem under open-field conditions: Dissipation behaviour and residue distribution. *Chemosphere* **2018**, *195*, 245-251, https://doi.org/10.1016/j.chemosphere.2017.12.011.
- 59. Shenggan, W.; Liqin, W.; Hao, X. U.; Xueping, Z.; Changxing, W.; Liping, C.; Qiang, W. Study on residue of imidacloprid in rice and field environment. *Acta Agriculturae Zhejiangensis* **2004**, *16*, 274-278.

Publisher's Note & Disclaimer

The statements, opinions, and data presented in this publication are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim any responsibility for the accuracy, completeness, or reliability of the content. Neither the publisher nor the editor(s) assume any legal liability for any errors, omissions, or consequences arising from the use of the information presented in this publication. Furthermore, the publisher and/or the editor(s) disclaim any liability for any injury, damage, or loss to persons or property that may result from the use of any ideas, methods, instructions, or products mentioned in the content. Readers are encouraged to independently verify any information before relying on it, and the publisher assumes no responsibility for any consequences arising from the use of materials contained in this publication.