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Abstract: Antibiotics have revolutionized modern medicine, but their availability and indiscriminate 

use have led to persistent contamination of aquatic ecosystems. Significant quantities of domestic 

sewage. Reports suggest that antibiotic concentrations range from nanograms per liter (ng/L) to several 

micrograms per liter (µg/L) in surface waters globally. Such contamination has significantly contributed 

to the development and spread of antibiotic-resistant microorganisms and genetic determinants of 

resistance, often through mechanisms such as horizontal gene transfer. This poses a serious risk to 

aquatic life and human health. Hence, this review focuses on the major sources of antibiotic pollution 

and their toxicological effects on model organisms, such as Daphnia magna, zebrafish, and C. elegans, 

as well as current detection methods, including LC-MS/MS and biosensors. We also discuss 

remediation strategies like advanced oxidation processes (AOPs), membrane filtration, and 

bioremediation. Despite technological progress, regulatory enforcement and public awareness remain 

limited. Hence, this review also describes an in-depth discussion on the areas requiring future research 

and the urgent need for integrated policy, advanced analytical monitoring, and sustainable management 

practices to mitigate antibiotic contamination in aquatic environments. 
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1. Introduction 

The chemical substance generated by bacteria to kill other bacteria or germs was 

characterized as an “antibiotic”, as stated by S.A. Waksman in 1947. However, the various 

methods by which modern antibiotics are produced and used have significantly altered this 

concept. Now, antibiotics are defined as any chemical, synthetic, natural, or organic material 

that stops the development of infections [1]. 

Antibiotics are a group of drugs used to treat bacterial illnesses [2]. They function by 

eradicating or slowing the growth of bacteria, thereby empowering the body's immune system 

to fight off various illnesses. These pharmaceuticals adhere to bacterial cells and interfere with 

their molecular mechanism for protein production, nucleic acid synthesis, or metabolic 

pathways [3]. They interfere with vital functions and disrupt the bacteria's ability to replicate, 

grow, or survive, ultimately leading to their elimination by the immune system [4]. 
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In downstream water, the concentration of antibiotics is higher due to the discharge 

from wastewater treatment plants. Similarly, the antibiotic concentration in river water is 

higher in areas near urban regions than in rural areas due to the high population and various 

anthropogenic activities [5]. Additionally, when surface water is considered, the antibiotic 

concentration is comparatively lower due to dilution from water or adsorption in suspended 

solids. Moreover, the occurrence of these antibiotics varies considering different seasons [6]. 

When the marine environment is considered, the concentration is lower due to the dilution 

process through deposition, degradation, and/or exchange of antibiotics between coastal waters 

and the open sea. Finally, the association of antibiotics with groundwater depends on the 

variability of the season. For example, during the season of heavy rainfall, there is potential for 

groundwater runoff into surface water, which may create a dilution effect leading to low 

antibiotic concentrations. 

A study highlighted the importance of monitoring emerging contaminants and 

developing efficient treatment options to mitigate antimicrobial resistance (AMR) and remove 

these toxins from water sources [7]. Also, a reported study found that antibiotic concentrations 

were discovered to be in the low to medium range. Yet, they could still pose a hazard to the 

environment and contribute to the development of antimicrobial resistance. Moreover, it was 

also reported that more than 70% of all medications used on animals and 6% in the case of 

people were antibiotics [8]. 

To select the most suitable antibiotics, it is essential to consider various parameters, 

including the nature of the infection, bacterial susceptibility, and safety considerations. 

Antibiotic medication was originally used to treat bacterial infections in humans, animals, and 

plants. Some of these illnesses are infections of the respiratory pathways, infections in the 

urinary tract systems, dermatosis, Sexually Transmitted Infections, Surgical Prophylaxis, and 

Bacterial Meningitis [9]. According to a study, Eastern Europe and Central Asia had the 

greatest rates of antibiotic use, while Sub-Saharan Africa had the lowest rates [10]. According 

to a 2016 study, the estimated global consumption of antibiotics is 14.3 billion, with a 95% 

consumption rate. Additionally, research conducted in North Africa, the Middle East, and 

South Asia revealed high consumption rates for particular antibiotic classes [11].  

The production of antibiotics is increasing rapidly due to high population growth in 

Asia, the USA, Africa, Europe, and Australia. Certain wastes (antibiotic residues) generated 

during the manufacture of antibiotics in the pharmaceutical industries are sent to treatment 

facilities, while others are released straight to water sources without sufficient treatment. These 

antibiotics can break down into a variety of metabolites on water surfaces, interact with other 

metabolites, or react with other substances, forming complexes or other toxic agents that can 

give rise to cancer-causing chemicals, which can be extremely lethal to humans and aquatic 

life [12]. 

Although less harmful than other contaminants, the presence of antimicrobials in water 

habitats can nonetheless alter the habitat or ecosystem of microorganisms and other aquatic 

animals in these environments, resulting in the encouragement of multidrug resistance in 

bacteria. According to studies, antibiotics present in aquatic environments can lead to 

modifications in bacterial communities, which can create and spread drug-resistant genes [13]. 

The current review sheds light on the occurrence of antibiotics in aquatic environments 

from various sources and their toxicological consequences on different model organisms, 

followed by a detailed discussion about the risks of antibiotics found within aquatic 

ecosystems. Subsequently, we describe the advanced techniques currently applied for the 
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identification of antibiotics. Further, this paper has also discussed the remediation methods 

currently available to tackle antibiotic pollution. Moreover, in-depth discussions have also been 

conducted on areas requiring further improvement and research regarding the present topic. 

2. Sources of Antibiotic Contamination in the Aquatic Environment  

Antibiotics can enter our environment from various sources, potentially leading to 

deleterious effects on humans and animals [14–17]. Figure 1 below highlights the various 

routes of antibiotic contamination in the aquatic environment and its impact on humans and 

animals. 

 
Figure 1. Sources of antibiotic contamination in the aquatic environment and their impact. 

2.1. Household and municipal wastes.  

The term "municipal waste" refers to garbage produced or discarded within a city and 

subsequently disposed of at a municipal landfill. In addition to debris from building and 

demolition operations, this garbage also includes waste from homes, companies, hospitals, and 

other organizations. Over time, certain medications, such as antibiotics, may be inadvertently 

combined with other types of municipal waste that have been discarded, posing a risk of 

environmental contamination and potential harm to living organisms. The danger of acquiring 

antibiotic resistance rises when outdated or unused drugs are improperly disposed of in the 

environment [18]. Antibiotics and antibiotic-resistant bacteria may be present in areas where 

municipal waste is disposed of. These antibiotic-resistant bacteria may spread through 

leachates, posing a serious threat to the ecosystem. Inevitably, it is not possible to determine 

the susceptibility of antibiotics in bacterial communities due to the widespread transfer of 

municipal waste in terminals nationwide [19]. 

A study found that in low-income settings, wastewater is primarily composed of feces 

and urine, which contain excreted pharmaceuticals and often end up in on-site sanitation 

systems, such as pits, latrines, septic tanks, and even the environment in the case of open 

defecation [20]. However, there is a possibility of pharmaceutical pollution in groundwater 

sources, including those used for drinking water supply, due to strong hydrological connections 

between pit latrines and groundwater systems [21]. 
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Furthermore, customers may run the risk of health problems if they dispose of their 

unwanted pharmaceutical waste in the toilet or washbasin. In a study conducted in the 

Malaysian town of Selangor, it was found that the vast majority of participants, approximately 

81.6% of respondents, admitted that storing their unused and expired medications at home is a 

risk. Regarding the notion that improperly discarded pharmaceutical waste may impact surface 

water, 73.4% of participants agreed with this concept [22]. 

2.2. Agricultural sources.  

The degree to which pharmaceutical residues adhere to soil solid fragments, such as 

organic matter, influences their behavior and persistence in the soil. The amount of sorption 

influences the accessibility of the medication's active ingredients as well as their persistence in 

the soil [23]. 

In a study conducted in Pakistan, it was discovered that a significant majority (85%) of 

the farms lacked a proper wastewater drainage system. As a consequence, poultry waste and 

antibiotic residues were directly released into the surrounding environment. Antibiotics seep 

into the soil and subsequently reach the groundwater [24]. Antibiotic drugs administered to 

livestock are present in their manure and are used as fertilizers for agricultural purposes, which 

may result in veterinary medicines entering water bodies through leaching [25]. Soil leaching, 

wastewater discharge into surface waterways, and agricultural runoff result in antibiotics being 

present in groundwater, indicating that they have been filtered through the soil strata and 

influenced by rainfall events [26]. 

In another research report, it was found that 66% of poultry farmers also maintained 

other kinds of animals. The majority of individuals store their medications in cabinets or 

drawers and in a convenient location, such as a refrigerator. Furthermore, improper disposal of 

unused medications in household trash can result in antibiotics ending up in landfills [27]. Over 

time, leachate from these landfills can carry residues that infiltrate the nearby soil and water 

bodies [28].  

Different farming techniques have been adopted to meet the demand for animal proteins 

in emerging countries. This has led to the inclusion of residual antibiotics in goods obtained 

from animals, resulting in an increase in antibiotic resistance. Such resistant bacteria can lead 

to serious public health issues because these diseases are transmissible from animals to humans 

via the food supply distributed in the natural world [29]. 

Agricultural runoff can lead to the pollution of terrestrial water and groundwater 

aquifers [30]. Similarly, in aquaculture, antibiotics are used to prevent infections in fish 

populations, and these compounds can escape from fish farms into surrounding water bodies, 

contributing to contamination. Urban areas with dense populations often exhibit significant 

antibiotic usage. During rainfall, stormwater runoff can carry antibiotics from urban surfaces 

into nearby water bodies. This runoff has been observed to contribute to the introduction of 

pharmaceutical residues into water surfaces, including dams, rivers, and lakes [31]. 

2.3. Medical wastes. 

People's health was at risk when medical wastes were improperly disposed of during 

the pandemic [32]. To avoid direct discharge into aquatic bodies, medical waste is 

conventionally treated via landfill and incineration. Improper medical waste disposal can lead 
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to contaminants entering groundwater and surface water through infiltration and runoff, 

potentially contaminating these water supplies [33]. 

It is now known that improper handling of medical waste can lead to environmental 

contamination and pose risks to water, air, agricultural products, the food chain, and livestock. 

Proper management and disposal of medical waste have become a debated and significant issue 

due to the ongoing rise in pharmaceutical use, and the disposal of leftovers or outdated 

pharmaceuticals ending up in sewage systems. In response to this issue, several nations have 

put in place pharmaceutical waste collection systems [34]. The necessity of measuring public 

awareness of this issue, as well as educating consumers about responsible drug use and the 

proper disposal of leftover or expired pharmaceuticals, must be critically addressed [35]. 

A previous study found that approximately 53.9% of respondents disposed of their 

stored medications in conventional trash cans alongside other solid waste. The most typical 

way for individuals to dispose of unneeded medications is in standard trash cans [36]. 

Comparatively, the study found that the practice of flushing unwanted medications down the 

toilet or draining or disposing of them with regular solid waste (3%) is uncommon in developed 

countries [37]. 

Medical waste belongs to a unique group of hazardous contaminants, and during public 

health emergencies, improper treatment might lead to secondary environmental pollution. Even 

in the absence of a pandemic, the large population expansion is expected to drive more than a 

50% rise in medical waste output by 2030. Due to a significant portion of the larger population 

and gross domestic product (GDP), the eastern region generated more medical waste than the 

western region. However, the amount of household consumption alone determines the per 

capita medical waste output, which is not impacted by any regional features [38]. 

2.4. Industrial wastes. 

The pharmaceutical industry has experienced significant growth in recent years due to 

the high demand for drugs to treat various diseases worldwide. This increased demand is a 

result of the growing global population and the prevalence of acute and chronic illnesses [39]. 

Unfortunately, the growth of these industries has led to the pollution of surface water through 

multiple means. During the manufacturing processes of pharmaceutical products, a wide range 

of chemicals, solvents, and reagents are utilized. When these substances mix with wastewater, 

they can come into contact with surface water after being discharged from wastewater 

treatment points [40]. In certain scenarios, pharmaceutical waste is partially treated and 

released, increasing the likelihood of environmental contamination with pharmaceutical 

residues [41]. 

Spills and leaks from pharmaceutical manufacturing industries can also lead to 

environmental contamination from these residues. Leaked pharmaceutical ingredients may 

eventually be washed into rivers, lakes, or oceans by running water [42]. Additionally, the 

presence of pharmaceutical compounds in drinking water can originate from two sources: the 

production processes of the pharmaceutical industry and the common use of pharmaceutical 

compounds, resulting in their presence in urban and agricultural wastewater [43]. 

Wastewater in pharmaceutical manufacturing industries arises during the synthesis and 

production of drugs. The production of active pharmaceutical ingredients involves various 

chemical reactions, leading to the generation of wastewater. The quantity and composition of 

this wastewater can vary based on factors like plant location, raw materials used, and the 

manufacturing processes employed [44]. The diversified nature of the pharmaceutical industry 
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makes it challenging to implement a standardized treatment system for managing these 

wastewater streams [45]. Inadequate treatment of these effluents can lead to the direct release 

of antibiotics into the aquatic environment. The pharmaceutical industry's rapid growth has led 

to various pollution pathways in surface water. To mitigate this issue, pharmaceutical 

companies need to implement proper waste management practices and invest in effective 

wastewater treatment technologies to minimize the environmental impact of their operations.  

Table 1 below highlights some important examples of the most commonly used 

antibiotics globally, along with their associated contamination. The table highlights the specific 

antibiotics studied and the maximum concentration of antibiotics detected from that source. 

For example, in Korea, the composting aquatic system from swine manure detected the highest 

concentrations of tetracyclines and sulfonamides. In India, multiple locations, including Delhi, 

Kota City, and Ujjain, exhibit significant antibiotic contamination from the sewage system and 

hospital wastewater, with residues such as ampicillin and cefpodoxime detected at the highest 

concentrations. In Africa, sewage treatment plants and hospital wastewater have been identified 

as the primary sources of antibiotic contamination in the environment, with high levels of 

sulfonamides and fluoroquinolones. Furthermore, regions such as Southeast Queensland, 

Australia, and Buenos Aires, Argentina, have reported significant amounts of 

fluoroquinolones, sulfonamides, and macrolide antibiotics in rivers and industrial discharges. 

In Europe, the most commonly detected antibiotics are macrolides and beta-lactams in the 

wastewater system. These observations highlight the presence and distribution of antibiotics in 

various aquatic systems within our environment. 

Table 1. Some examples of the most commonly used antibiotics globally & their contamination. 

Country/continent 
Sources of antibiotic 

contamination 
Studied antibiotics 

Maximum detected 

concentration 
References 

Korea (Asia) 
Swine manure 

composting 

Tetracyclines, 

Sulfonamides 

Tetracycline 

(254.82μg/L) 
[46] 

Delhi, India (Asia) Sewage system Beta-lactams 
Ampicillin (104.2 

μg/L) 
[47] 

Bangladesh (Asia) Aquaculture 
Sulfonamides, Beta-

lactams 

Trimethoprim 

(41.67μg/L) 
[48] 

Kenya (Africa) 
Sewage treatment 

plant 

Sulfonamides, 

Fluoroquinolones, Beta-
lactams 

Norfloxacin (56μg/L) [49] 

South–East 

Queensland, 

Australia 

Hospital samples 

Beta lactams, 
Quinolones, 

Macrolides, 

Tetracyclines, 

Lincosamides, 
Sulphonamides 

Ciprofloxacin  (>64 

μg/L) 
[50] 

Bangzhou Bay, 

China 
Estuary aquaculture 

Sulfonamides, 

Quinolones, 

Tetracyclines, 

Amphenicol 

Tetracyclines (39.59 

ng/L) 
[51] 

Bushehr City (Iran) 
Wastewater treatment 

plant 
Macrolide 

Azithromycin (896 

ng/L) 
[52] 

Kota City (India) 
Hospital  wastewater 

samples 

Beta-lactams, 

Cephalosporins, 
Floroquinoles, 

Penicillins 

Cefpodoxime (3.24 
mg/L) 

[53] 

Ujain (India) 
Kshipra is affected by 

industrial pollutants 

Sulfonamide, 

Fluroquinolones 

Sulfamethoxazole 

(4.66 μg/L) 
[6] 

Delhi-India Yamuna River 

β-lactam, 

Fluoroquinolone, 

Cephalosporin 

Amoxicillin 13.75μg/L [47] 

China Songhua River 

Macrolide, 

Cephalosporins, 

Floroquinoles 

Sulfamethoxazole 

(73.1ng/L) 
[54] 
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Country/continent 
Sources of antibiotic 

contamination 
Studied antibiotics 

Maximum detected 

concentration 
References 

Buenos Aires-

Argentina 

Rivers and farm 

wastewater 
Fluoroquinolones Enoxacin (22.1μg/L) [55] 

Nairobi County, 

Kenya 
HWW 

Sulfonamides, β-

lactams, Macrolides, 

Aminoglycosides 

Sulfamethoxazole 

(20.6μg/L) 
[56] 

Kharkiv region-

Ukraine 
Surface water Macrolides 

Azithromycin (30 

μg/mL) 
[57] 

Africa Wastewater 

Aminoglycoside, 

Macrolides, 

Quinolones, 
Tetracycline, 

Trimethoprim 

Sulfamethoxazole 

(39μg/L) 
[58] 

European Waste water 
Macrolides, 

Fluoroquinolones 

Azithromycin (1577.3 

ng/L) 
[59] 

Yellow Sea in 

China 
Surface water 

Tetracyclines, 

Sulfonamides, 

Fluoroquinolones 

Ciprofloxacin (6.6 ng 

/L) 
[60] 

Mekong Delta, 

Vietnam-Asia 

Freshwater 

aquaculture, 

Sulfonamides, 

Fluoroquinolones 

Sulfamethoxazole (21 

ng/L) 
[61] 

Terahan-Iran 

Wastewater treatment 

plant (From hospital 

water) 

Cephalosporins, 

Fluoroquinolones 

Cephalexin (977.7 

ng/L) 
[62] 

BRAZIL-South 
America 

Wastewater treatment 
plant 

Metronidazole, 

Tetracyclines, 
Sulfonamides, 

Fluoroquinolones 

Sulfamethoxazole 
1.374 μg/L 

[63] 

USA-North 

America 
Waste water 

Macrolides, 

Fluoroquinolones, 

Sulfonamides, 

Cephalosporins 

Cephalexin 

(13.818μg/L) 
[64] 

Nigeria-Africa 
Hospital Wastewater 

Treatment Plants 
Fluoroquinolones 

Ciprofloxacin (561 

μg/L) 
[65] 

Chemicals used in the manufacturing process of pharmaceuticals are not completely 

filtered out, allowing pollutants to leak into nearby water bodies and open fields. This results 

in pollution when effluent from pharmaceutical facilities contaminates adjacent water bodies 

and open fields, thereby increasing the amount of pharmaceutical waste in the ecosystem [66]. 

Most municipal wastewater treatment plants are unable to remove these chemicals from 

drinking water, so they end up in rivers after being flushed down the toilet or excreted from the 

body. This can lead to chronic exposure and major health problems [67,68]. 

Active pharmaceutical chemicals are found in over 50% of all the world's rivers at 

concentrations that can have a serious negative influence on health. Significant pollution, 

primarily from fluoroquinolones, was identified in a supplementary investigation that assessed 

active pharmaceutical ingredients in the surface, groundwater, and drinking water, both 

upstream and downstream of industrial discharge. Ciprofloxacin, for instance, was detected in 

quantities ranging from 2500 to 10000 µg/L in rivers and lakes, and between 44 and 14000 

ng/L in wells, indicating that pharmaceutical manufacturers' effluents can pollute water bodies 

past the discharge point [69].  

Other studies conducted in the Musi River, India, have pointed out that water bodies 

typically contain antibiotics, and drinking water from these water bodies is crucial for human 

survival. However, this contamination poses a significant health risk. The above study found 

Fluoroquinolones at an alarming concentration; for instance, the concentrations of 

ciprofloxacin, ofloxacin, and norfloxacin were 5015 μg/L, 542.4 μg/L, and 251 μg/L, 

respectively [70]. It is noteworthy that the amount of antibiotics found in aquatic bodies 

exceeds the EPA's (Environmental Protection Agency) recommended draft notification 

thresholds, raising a red flag for water’s antibiotic regulatory bodies [71]. 
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For instance, in the investigation conducted in the Kshipra River in 2020 during the 

pandemic, sulfamethoxazole was detected at a concentration of>4.66 µg/L. The scientists 

found that it was crucial to routinely check the Kshipra River for antibiotic residues to prevent 

the emergence of resistance, which jeopardizes the health of humans and other animals, as well 

as the entire ecosystem [72]. In autumn, studies conducted on the river water found that 

sulfamethoxazole was more prevalent in the water. Researchers also discovered norfloxacin 

and ofloxacin in amounts of 0.66 g/L and 0.99 µg/L, respectively. In the fall season, the values 

ranged from (0.74 - 5528 µg /L), and ciprofloxacin was identified as the most prevalent 

antibiotic [73]. A similar study reported fluoroquinolone antibiotic concentrations in Musi 

River water samples up to 6278 µg/L [70]. 

3. Antibiotic Contamination in the Aquatic Environment  

Antibiotic residues enter our environment through various pathways, including the 

removal of unmetabolized pharmaceuticals from organisms, such as humans and veterinary 

animals, limited biodegradation capacity in microorganisms, inadequate disposal of medical 

waste, and the release of pharmaceutical manufacturing waste [74]. Once present in our habitat, 

antibiotics have serious negative effects on the ecology and facilitate the emergence of 

antibiotic resistance, resulting in the spread of environmental contamination from antibiotic 

residues [75]. 

Levofloxacin and azithromycin were identified as the primary contributors to 

contamination in a study conducted in India. It's conceivable that the high concentration of 

these drugs was caused by residents' use of drugs to treat seasonal ailments, including colds, 

fever, and respiratory infections that are common in the winter [64]. 

In a study conducted by analyzing the Seine River in France, the authors reported the 

presence of three antibiotics, namely Ofloxacin, Norfloxacin, and Sulfamethoxazole, at higher 

concentrations. All antibiotics identified in this analysis exceeded the Ministry's draft notice 

limitations, despite the investigation's limited sample size. The main source of antibiotic 

residues in this river may be treated and untreated sewage from point and non-point sources 

[76]. According to a reported study in Jianghan Plain, China, Erythromycin had the highest 

detection frequency among all other antibiotics in water samples from surface sources in 

different seasons, including winter, summer, and spring, with concentrations of 0.546 μg/L, 

1.60 μg/L, and 0.772 μg/L, respectively. The issue of a smaller number of sewage systems in 

lower-income countries can impact the exposure pathways [77]. Additionally, middle-income 

countries discharge untreated sewage into water bodies and then use the water for irrigation 

[78]. Manure spread on farms and runoff from agricultural fields introduce antibiotics to 

surface and groundwater. In countries where manure is stored in manure lagoons, heavy rainfall 

can cause antibiotics to enter the aquatic system. Moreover, accidental spillage of antibiotics, 

their disposal, and atmospheric dispersal of manure and feed dust contaminated with antibiotics 

can also be small sources of antibiotic contamination [79]. 

Residues of several antibiotics, including erythromycin (320.5 ng/L), ciprofloxacin (3 

ng/L), metronidazole (1195.5 ng/L), clarithromycin (320.5 ng/L), norfloxacin (10 ng/L), 

tetracycline (23 ng/L), ofloxacin (179 ng/L), trimethoprim (424 ng/L), and sulfamethoxazole 

(326 ng/L), were detected in rivers like Tagus, Guadarrama, Jarama, Henares, Manzanares [80] 

providing valauble insights on antibiotics pollution in these rivers. Similarly, the largest rivers 

in Spain, such as the Llobregat and Ebro, were also reported to be contaminated with traces of 

antibiotics [81]. Antibiotic contamination, including ciprofloxacin (653 ng/g), norfloxacin 
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(5770 ng/g), oxytetracycline (652 ng/g), and ofloxacin (1290 ng/g), has been detected in the 

Pearl, Hai, Liao, and Yellow Rivers in China [82]. Studies have also found varying 

concentrations of antibiotics, such as ciprofloxacin, azithromycin, and sulfamethoxazole 

(SMX), in wastewater, surface water, soil, and even drinking water, which could contribute to 

the emergence of antimicrobial resistance in bacteria and pose a risk to both human and animal 

health [21, 83, . 

Even though one of the strongest natural filters for preventing contaminants from 

entering freshwater is soil, due to anthropogenic activities, urban aquifers have become a 

primary source of antibiotic pollution, contributing to the presence of antibiotic residues in 

underground water. Nevertheless, the soil's proficiency in contamination, the extent of 

retardation is determined by a combination of factors, including the physicochemical 

properties, ambient concentration, and environmental nature of the pollutant [28]. For instance, 

the highest concentration was found for ciprofloxacin (1.270 µg/L), followed by levofloxacin 

(0.177 µg/L) and amoxicillin (1.50 µg/L) antibiotics in the groundwater of Spain. Additionally, 

a study found that wastewater treatment plants (WWTPs) are the primary source of 

contaminated drinking water, according to a study that revealed 72 distinct pharmaceutical 

residues in Barcelona's underground water[85]. Additionally, the Llobregat delta (Catalonia, 

Barcelona, Spain) was the subject of a three-year continuity study that confirmed 

contamination, with the highest concentrations of ciprofloxacin (323.57 ng/L) in the delta, due 

to poor sanitation, improper wastewater treatment, and the misuse of agricultural antibiotics 

[86]. 

Furthermore, seawater has been found to have a lower concentration of antibiotics 

compared to wastewater treatment plants and sewage water, with river confluences being the 

primary source of antimicrobial pollution in rivers. Previous research has identified such 

instances in Bohai Bay coastal waters, providing insight into how Bohai Bay’s ecological 

disturbance was caused by the discharge of rivers contaminated with antibiotic residues [60]. 

Table 2 below highlights various contaminations of antibiotics in various aquatic 

matrices. Wastewater samples revealed the highest detection of antibiotics, including 

amoxicillin, ciprofloxacin, ofloxacin, sulfamethoxazole, and ampicillin, with concentrations 

ranging from non-detectable to 495 μg/L. Followed by the hospital wastewater with the highest 

concentration of antibiotics, including amoxicillin, ceftriaxone, amikacin, ofloxacin, and 

ciprofloxacin, with concentrations up to 236.6 μg/L. Groundwater was mostly contaminated 

with antibiotics, including sulfonamides, chloramphenicol, tetracycline, β-lactams, and 

erythromycin, with concentrations ranging from 0.0001 μg/L to 100 μg/L. Surface water was 

found to contain a wide range of antibiotics, including azithromycin, clarithromycin, 

trimethoprim, ciprofloxacin, ceftriaxone, and metronidazole, with concentrations reaching up 

to 5528 μg/L. 

Table 2. Examples of Antibiotic Contamination in various aquatic matrices. 

Matrix Detected antibiotics 
Concentration 

(μg/L) 
References 

Wastewater 

(Sewage 

system) 

Amoxicillin, Ciprofloxacin, 

Ofloxacin, 

Sulfamethoxazole, 

Norfloxacin, Ampicillin, 
Naproxen, Trimethoprim, 

Levofloxacin, Azithromycin, 

Metronidazole 

ND- 0.1726, 

ND-5.75, ND-

17.84, 0.024-7.3, 

ND-2.75, ND-
51.82, 4.5- 

495,≥0.023, 

≤1.374 

[7,47,63,64,73] 
 

Hospital 

wastewater 

Amoxicillin, Ceftriaxone, 

Amikacin, Ofloxacin, 

ND-236.6  

43 

[87,88] 
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Matrix Detected antibiotics 
Concentration 

(μg/L) 
References 

Ciprofloxacin, Norfloxacin, 

Levofloxacin, 
Clarithromycin, 

Trimethoprim, 

Sulphapyridine, 

Sulfamethoxazole 

Groundwater 

Sulfonamide, 

Chloramphenicol, 
Tetracycline, ß-Lactams, 

Erythromycin, 

Ciprofloxacin, Ofloxacin, 

Sulfamethazine, 
Sulfamethoxazole, 

Azithromycin, 

Ciprofloxacin, Norfloxacin, 

Sparfloxacin, Amikacin, 
Trimethoprim, 

Clarithromycin, 

Trimethoprim 

1-100, <0.1944, > 
0.1, <0.0001-0.034, 

0.001- 0.816 

[88–90] 
 

Surface 

water 

Azithromycin, 

Clarithromycin, 

Trimethoprim, Ciprofloxacin, 
Ceftriaxone, Ofloxacin, 

Norfloxacin, 

Sulfamethoxazole, 

Metronidazole, Triclosan, 
Carbamazepine, Ampicillin,  

Ciprofloxacin, Gemifloxacin, 

Sparfloxacin, Cefuroxime, 

Naproxen, Sulfamethoxazole, 
Trimethoprim, Erythromycin, 

Keflex, Tetracyclines, 

Roxithromycin, 

Clarithromycin, Clindamycin, 
Lincomycin, Miconazole, 

Thiabendazole 

ND -4.66, <5528, 
0.2 - 0.93, 9.44–

51.6, ND-5.38, 9.5–

263.3, 0.2-0.93, 
4.7-2500, 0.0547-

0.826, ND-35.5, 

ND-3., 3e-5-

0.0171, 20≤50, ≤1, 

0.0571 -2.7966, 

0.100 μg/L- 1.60, 

0.004-0.021, 0.024-

7.3 

[6,8,27,61,91–101] 

 

*ND- Not Detected 

4. Toxicity of Antibiotics 

Antibiotics are pervasive environmental contaminants that, due to their high durability, 

may have effects spanning multiple generations. Unfortunately, little is known about their 

impacts across generations and possible pathways. Moreover, antibiotics encourage the 

emergence of an emerging pollutant called antibiotic resistance [102–104]. 

One of the major reasons for antibiotic pollution is that many countries rely on septic 

tanks for sewage disposal, which pollutes aquatic bodies. The leachate generated from 

municipal solid waste landfills containing disposed antibiotics also leaches into the 

groundwater, leading to the issue of antibiotic resistance genes (ARGs) and antimicrobial-

resistant bacteria (ARB) [29, 105]. Additionally, another issue with antibiotics is that they can 

accumulate in the environment and subsequently in crops. Drugs being excreted from the 

human body are also entering the environment through sewage [29, 105, . These 

pharmaceuticals take a large amount of time to be eliminated, thus entering our food chain 

[105] as shown in Figure 2. 
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Figure 2. Schematic representation of the antibiotic resistance cycle in aquatic environments, showing entry of 

antibiotics into the water bodies and promoting the proliferation of resistant bacteria and subsequent exposure to 

living organisms.  

 These antibiotic-resistant bacteria can easily contaminate food and enter the bodies of 

biological organisms, posing a major health challenge [107]. The propagation of AMR in the 

environment is largely driven by Horizontal gene transfer (HGT) in natural ecosystems, which 

is intensified by human activities [108,109]. Horizontal Gene Transfer (HGT) is one of the 

most important mechanisms by which bacteria exchange genetic material, including antibiotic 

resistance genes (ARGs), across individuals or species, bypassing the traditional mode of 

inheritance. HGT occurs primarily through three mechanisms: transformation (the uptake of 

free DNA fragments from the environment), conjugation (the direct transfer of plasmids 

between bacterial cells via cell-to-cell contact), and transduction (the transfer of bacterial DNA 

via bacteriophages) [110,111]. These processes enable bacteria to rapidly acquire and 

disseminate resistance traits, contributing significantly to the spread of antimicrobial resistance 

(AMR) [110,111], as illustrated in Figure 3.  

 
Figure 3. Illustration of environmental pathways contributing to antibiotic contamination and antimicrobial 

resistance (AMR) propagation in aquatic systems. (included figures are original and non-published) 
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Additionally, pollutants like pharmaceuticals and industrial chemicals can enhance 

HGT by affecting bacterial cell permeability or inducing stress responses. Furthermore, climate 

change factors, including rising temperatures and extreme weather events, can enhance 

bacterial growth and gene transfer, thereby exacerbating the spread of AMR and posing 

significant public health challenges [108,109].  

Numerous case studies have highlighted the prevalence of antibiotic resistance genes 

(ARGs) in downstream of pharmaceutical facilities, underscoring the urgent need for stringent 

environmental regulations. In Nigeria, untreated wastewater from pharmaceutical plants has 

been found to harbor multiple clinically significant β-lactam resistance genes, including 

blaTEM, NDM-1, OXA, IMP, and CTX-M, as well as MLS resistance genes and sulfonamide 

resistance genes such as sul1, sul2, and sul3 [112–114]. Similarly, in Saudi Arabia's Wadi 

Hanifah Valley, downstream water samples exhibited a high frequency of ARGs such as 

tet(M), tet(B), erm(B), and sulII, indicating significant contamination from upstream 

pharmaceutical discharges. In Europe, studies have detected pharmaceutical pollutants, 

including antibiotics, in rivers within national parks, leading to concerns about the impact on 

freshwater organisms and human health due to the promotion of antimicrobial resistance [112–

114]. According to the World Health Organization, human deaths due to antibiotic-resistant 

organisms are more than those of diseases [107]. These findings underscore the crucial need 

for intensified monitoring and regulation of pharmaceutical pollution to protect environmental 

and public health [112–114]. 

The wastes from animals carry a large number of germs that can cause human disease. 

Among these, many microbes can already be transformed into resistant organisms, causing 

different ailments. Essentials like vegetables and fruits can also be contaminated with 

antibiotic-resistant bacteria, posing a serious threat of food poisoning [115]. The World Health 

Organization (WHO) estimates that bacteria are one of the most common causes of global food 

poisoning. One of the reasons for this contamination may be the use of contaminated water for 

irrigation. Antibiotics have been used for years to treat bacterial infections, but as many of 

these bacteria have developed resistance, scientists are exploring ways to combat these 

notorious microbes. Multiple factors, including antibiotic efflux from the body and the 

modification of functional groups of antibiotic-modifying co-substrate enzymes, contribute to 

the development of antibiotic-resistant bacteria. Also, changes in the cell surface receptors, 

redox systems, and severe antibiotic stress lead to the production of resistant enzymes [115]. 

The various toxic reactions of antibiotics include skin rashes, serum sickness, 

thrombocytopenia, erythema multiforme, hemolytic anemia, vasculitis, acute interstitial 

nephritis, Stevens-Johnson syndrome, and toxic epidermal necrolysis. For example, allergic 

reactions have been reported in people who consumed milk, meat, and pork, all containing 

penicillin residues [116]. Furthermore, some studies have mentioned that aminoglycoside, 

sulfonamide, and tetracycline residues can also cause allergic reactions [117]. For example, a 

study reported that penicillin, oxacillin, cloxacillin, flucloxacillin, and amoxicillin-clavulanate 

could cause hepatitis [118]. At the same time, tetracyclines can mimic acute fatty liver during 

pregnancy. 

Furthermore, a study has reported that nitrofurantoin could cause chronic hepatitis 

mimicking chronic autoimmune hepatitis, acute cholestatic, and hepatocellular reactions [119]. 

Other antibiotics like Ceftriaxone are also known to cause drug-induced gallstones and 

quinolone cholestasis. Sulfamethoxazole/trimethoprim is also capable of causing 

hepatotoxicity, especially in patients with acquired immunodeficiency syndrome [118]. 
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Mutagenicity, reproductive disorders, and teratogenicity have also been reported in various 

studies [120]. 

Various toxicity studies examine the impact of antibiotics on different organisms. 

Among these, zebrafish, Daphnia magna, and C. elegans have recently been used to screen 

various environmental toxicants. Zebrafish is an animal model that the OECD has 

recommended as an indicator of the ecological toxicity of contaminants in aquatic 

environments. Due to its low costs, ease of maintenance, genetic capabilities, and 

manipulations, it has been used in toxicity studies [121]. Table 3 below highlights some recent 

toxicity studies using Zebrafish.  

Table 3. Highlights some recent toxicity studies using Zebrafish. 

Sr. No Antibiotics Parameters Results References 

1 
Tetracycline and 

Bacteriostatic 

antibiotics 

Biochemical 
parameters and 

gene expression 

Impact on zebrafish gut health with a decrease in 

expression of muc2.1. Moreover, a decrease in 
OUT numbers and alpha-diversity indexes. 

Further levels of mRNA in glycolipid 

metabolism genes like PK, FAS, ACC1, and 

ACO increased. 

[122] 

2 
Bacteriostatic 

antibiotic 

Oxidative stress, 

Antioxidant index, 
and immune-

related genes 

Increase in Oxidative stress activity leading to 

damage to the liver and gills. Activation of toll-
like receptors causes inflammation and 

upregulation of inflammatory factors 

[123] 

3 

Fluoroquinolone, 

tetracycline, and 

cephalosporin 

antibiotics 

Behavioural 

studies 

Acute exposure caused impacts on learning, 

memory processes, and aggression. 
[124] 

4 

Sulfonamde, 

cephalosporin, 
tetracycline, and 

fluoroquinolone 

antibiotics 

Single and 

combined toxicity, 
body length, and 

oxidative stress 

Shortened body length, an increase in ROS 
levels 

[125] 

5 Macrolide antibiotics 

Hepatotoxicity 

studies, cell 

viability, and LDH 
assay 

Liver degeneration, alteration in the size of the 

liver, and liver steatosis 
[126] 

6 

Penicillin, like 
diaminopyrimidines, 

and macrolide 

antibiotics 

Locomotor 

behavioral changes 

Significant increase in neurological motor 

impairments, movement, speed, etc. 
[127] 

7 

Tetracycline, 

sulphonamide, and 

macrolide antibiotics 

Gut microbiota and 

gene expression 

Imbalance in gut microbiome, and alteration in 

immune and stress-related gene expression 
[128] 

8 
Quinolone 
Antibiotics 

Survival and 
cardiac toxicity 

Dose-dependent mortality and teratogenic 

effects. Followed by cardiac developmental 
toxicity 

[129] 

9 
Sulphonamide 

Antibiotics 

Oxidative stress 

and immune 

disorder 

Oxidative stress and immune damage to the liver 
and gills with a decrease in gut microbiota. 

Moreover, pathological changes to the liver and 

intestinal tissues were observed. 

[130] 

10 
Fluoroquinolone 

Antibiotics 

Survival, Growth, 

biochemical 

alterations, and 
teratogenicity 

Higher doses led to growth retardation, 

malformations in zebrafish embryos, and 
biochemical alterations 

[121] 

11 
Sulfonamide 

Antibiotic 

Neuro-behavioural 

changes and Gene 

expression 

Alteration in behavior and growth was observed. 
At environmental concentrations, genes for 

folate synthesis and carbonic anhydrase were 

downregulated. 

[131] 

In recent studies, zebrafish models have been utilized to assess the toxicity of 

macrolide, bacteriostatic, quinolone, sulfonamide, fluoroquinolone, and tetracycline 

antibiotics. Zebrafish have been used to assess organ toxicity, growth, reproduction, 
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neurological defects, survival rates, and molecular alterations occurring from antibiotic 

exposures, as shown in Table 3.  

Daphnia is another important aquatic organism that is recommended by the EPA and 

OECD for aquatic ecotoxicological studies. The widespread presence of this species in the food 

web helps serve as a bioindicators for predicting health effects, due to its advantages, such as 

a short reproductive cycle and ease of maintenance [132–134]. Table 4 below depicts some 

recent toxicity studies of Antibiotics using Daphnia magna.  

Table 4. Depicts some recent toxicity studies of antibiotics using Daphnia magna. 

Sr. No Antibiotics Parameters Results References 

1 

Tetracycline, sulphonamide, 

aminoglycoside, and 

bactericidal antibiotics 

Population growth 

and metabolic 

profiles 

Moderate toxicity was observed in the 

case of sulphonamide, aminoglycoside, 

and bactericidal antibiotics. 

[135] 

2 Tetracycline antibiotic Reproduction effects 

Tetracycline antibiotic had caused 

modulation effects on the microbiome 
composition, causing changes in the 

reproductive cycle. 

[136] 

3 Tetracycline antibiotic 
Effects of Diet and 

Antibiotics 

Poor dietary effects at lower and 

higher concentrations impacted the 

overall survival rate and reproduction 

cycle. 

[132] 

4 Tetracycline antibiotic 
Mortality and gut 

biota 

Low mortality rates, but an alteration 

in the species diversity of the biota 
[137] 

5 
Fluoroquinolone and 

sulfonamide antibiotics 

Mortality and 

Mutagenic Potential 

Fatal mortality observed with injury-

related responses 
[138] 

6 Fluoro-quinolone antibiotics Reproductive effects 

Early oogenesis and increased brood 

size in the second birth at moderate 
doses. At higher doses, embryonic 

viability and offspring degradation 

were more prominent. 

[139] 

7 
Antimicrobial and 

Bacteriostatic antibiotics 

Acute toxicity at 

varying temperatures 

Acute toxicity increased for individual 

and combined exposures at higher 

temperatures. 

[140] 

8 Sulfonamide Antibiotics 

Mortality, Growth, 

Reproduction, 
locomotion behavior, 

and ingestion rate 

No changes to mortality and growth. 

Alterations in locomotion, ingestion 
rate, and reproduction were observed. 

Further, inhibition of AChE and lipase 

was observed. 

[134] 

Recent studies on Daphnia with various tetracyclines, sulphonamides, 

aminoglycosides, bactericidal Fluoroquinolones, and sulfonamide antibiotics have shown 

toxicity. In various studies, it was observed that the microbiome of Daphnia underwent 

alterations, affecting its survival rate, reproductive cycle, and subsequent growth and diet-

related changes, as shown in Table 4.  

C. elegans has been utilized as an important animal model for environmental 

toxicology, as 60-80% of genes are related to humans. Few recent studies have explored the 

potential toxicity effects of various sulphonamides, macrolides, tetracycline, and quinolone 

antibiotics on C. elegans. Various impacts, including dose-dependent toxicity, obesogenic 

effects, effects on the reproductive cycle, and the generation of oxidative stress, were observed, 

indicating the risks posed by antibiotics, as shown in Table 5. 

Table 5. Depicts some recent toxicity studies on antibiotics using C. elegans. 

Sr. No Antibiotics Parameters Results References 

1 
Sulphonamide 

Antibiotics 

Feeding, Growth, and 

Antioxidant Enzyme Levels with 
limited/high food availability 

Dose-dependent inhibition is greater with 
higher food plates 

[141] 

2 
Macrolide 

Antibiotics 

Lipid accumulation, Lipid 
Metabolism ELISA, Glucose 

Metabolism ELISA, gene 

Both diets stimulated body width and 
triglyceride levels, with higher stimulation 

with live bacteria. Water-borne antibiotics 

[142] 
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expression of  daf-2, daf-16, nor-

49, total carbohydrates, fatty acid 

levels, measurement of intestinal 

barrier damage, and bacterial 
colonization impacts with 

exposures in water and diet-borne 

antibiotics in the presence of live/ 

inactivated bacteria. 

inhibited the activities of enzymes 

involved in fatty acid β-oxidation, and 

diet-borne antibiotics inhibited the 

activities of enzymes involved in 
lipolysis, followed by stimulation of the 

activities of enzymes in lipogenesis. 

Moreover, waterborne antibiotics caused 

the upregulation of genes. The results 
pointed towards obesogenic effects with 

varying diets. 

3 

Tetracycline 

and 

Macrolide 

antibiotics 

Lifespan and aging parameters 

(feeding, accumulation of 

lipofuscin, and ATP levels) 

Extended lifespan and potential anti-aging 

effects 
[143] 

4 
Quinolone 

Antibiotics 

Locomotion behaviors, growth, 

apoptosis, ROS, and expression 
of genes coding for heat shock 

proteins, tumor suppression, 

superoxide dismutase, and 

Acetylcholine esterase 

Significant decline in locomotion 

behaviors and growth. Followed by an 
increase in ROS levels and apoptotic 

activity, indicating oxidative stress. 

Increase in gene expression levels 

indicating stress 

[144] 

5 

Macrolide 

and 
Sulphonamide 

Antibiotics 

Multi-trans generational impacts 
Inhibited reproduction and inhibition 

decreased with increasing generations. 
[145] 

Different antibiotics, such as sulfonamides, tetracyclines, and macrolides, have been 

shown to exhibit potential adverse effects on the development and growth of algae [146]. 

Studies with sulfathiazole exposure are one example that indicates their exposure might be 

linked to growth retardation of the macroalgae Lemna gibba, whereas antibiotics like 

aureomycin, oxytetracycline, and tetracycline were found to affect the growth of Microcystis 

aeruginosa [147] substantially. The inducible production of abscisic acid is connected to the 

explicit growth-inhibiting action of antibiotics. Another theory for how antibiotics impact algae 

is that they hinder protein production and harm the growth of chloroplasts, as this affects 

metabolism and photosynthetic ability, causing the algae's cell development and multiplication 

to be suppressed and inhibited [148]. Additionally, bone marrow toxicity and nephropathy were 

also seen in some antibiotics [149]. Multiple research studies have documented the toxic 

consequences of analgesics, including naproxen, ibuprofen, diclofenac, and paracetamol. A 

study has explained that environmental exposures to diclofenac can cause gill alterations and 

renal lesions in rainbow trout [150]. Diclofenac is also known to cause renal failures in vultures 

that feed on diclofenac-contaminated dead livestock [151]. Exposures of erythromycin and 

oxytetracycline are also known to cause alterations in the gills [152]. In a study, atorvastatin 

has been found to cause alterations in the biosynthesis and utilization of dietary fats in the 

primary intestinal region of species bivalves and changes in the mitochondria of Mytulis edulis 

[153]. Their presence in the environment can cause mutagenic effects, leading to the formation 

of micronuclei and binuclei in the gastrointestinal tract of tadpoles [154]. Growth inhibition 

was also explored in algae and cyanobacteria when they were exposed to 5-fluorouracil [155]. 

The problem of antibiotic residues has been found even in animal manures, for example, 

Ofloxacin and Norfloxacin have been found in chickens. Moreover, Ciprofloxacin, 

Enfluroxacin, Oxytetracycline, Chlorotetracycline, Sulphonamides, and Nitrofurans have also 

been detected in swine, cattle, and chickens. Similarly, tetracyclines and macrolides have also 

been detected in swine [156]. Furthermore, the adverse health effects of antibiotics and their 

residues when they enter the human body are affected by the microbiome. This can lead to 

alterations in the internal microbiome composition of the human body, resulting in disorders 

such as colitis, colorectal cancer, and intestinal ailments [157]. 
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5. Detection Strategies for Antibiotics from the Aquatic Environment  

There are various techniques for detecting antibiotics, including chromatography, 

electrophoresis, and enzyme-linked immunosorbent assay. Advanced technologies have also 

emerged, such as sensors for detecting antibiotics [158]. Chromatography coupled with mass 

spectrometry has enabled the detection of certain pharmaceuticals in the environment at lower 

concentrations [159]. For achieving better detection, more effective extraction methods are also 

necessary. There are various chromatographic techniques, such as High-Performance Liquid 

Chromatography with Ultraviolet or Diode Array Detection [160], which enable 

comprehensive detection and profiling of antibiotics using advanced analytical techniques, 

including LC-MS, tandem LC-MS/MS, and GC-MS [161]. Table 6 below gives a summary of 

various studies analyzing different antibiotics from various water matrices. The most employed 

method of sample extraction was Solid Phase Extraction. The common analytical methods 

employed were LC-MS/MS, UHPLC-ESI-MS/MS, and HPLC-MS for the identification and 

quantification of antibiotics. The following antibiotics were examined: trimethoprim, 

sulfamethoxazole, amoxicillin, azithromycin, ciprofloxacin, clarithromycin, doxycycline, 

levofloxacin, penicillin, roxithromycin, and many more. The sensitivity of the techniques 

employed was demonstrated by the differences in the limit of detection (LOD) and limit of 

quantification (LOQ) between investigations, which ranged from as low as 0.005 ng/L to as 

high as 3000000 ng/l. Antibiotic recovery rates from the samples also varied, with some 

investigations reporting recoveries of up to 129%. 

Table 6. Examples of chromatographic methods used for detecting antibiotics in various aquatic matrices. 

Matrix Antibiotics studied 
Extraction 

method 

Analytical 

method 
LOD: LOQ (ng/L) Recoveries (%) Ref. 

Wastewater 

(Sewage 

treatment 

plant ) 

Amoxicillin 

Azithromycin 

Ciprofloxacin 

Clarithromycin 
Doxycycline 

Levofloxacin 

Penicillin 

Roxithromycin 
Sulfamethoxazole 

Trimethoprim 

Solid Phase 

Extraction 

LC-MS/MS 

(Column size 150 
mm × 2.0 mm ) 

Particle size: 4 

µm  

2.8,9. 

0.2, 0.8 

13.5, 45.0 

2.2, 7.3 
8.8,29.2 

0.5, 1.6 

1.1, 3.8 

5.1,17.1  
5.1, 17.1  

3.1,10.2 

77 

78 

91 

69 
11 

89 

68 

51 
63 

94 

[162] 

Wastewater 

Ofloxacin  

Sulfamethoxazole 

Erythromycin 

Carbamazepine 

Solid Phase 

Extraction 

LC-MS 

Column size (125 

mm×2.0 mm) 

Particle size 5 μm 

29.3 

16.1 

12.4 

2.2 

 

142 

33.7 

67.7 
84 

[163] 

Seawater 

samples 

Cefotaxime  
Erythromycin 

Sulfamethoxazole 

Lincomycin 

Clindamycin 
Tetracycline 

Oxalic acid 

Sulphapyridine 

Solid Phase 

Extraction 

UHPLC-ESI-MS-
MS 

Column size 

column (4.6 

mm×150 mm, 2.7 
µm)  

Particle size: 5 

µm 

0.02 -2, 

0.06 -2.3 
66 -113 [164] 

Surface 

wastewater 

Ampicillin 
Sulfamethoxazole 

Solid Phase 
Extraction 

(LC-MS/MS) 

 Column size 

(250x4mm) 
Particle size: 2.6 

µm 

0.02 -0.59  
0.07 -1.80 

97.4 
96.8 

[165] 

WWTPs 

Clarithromycin, 

Azithromycin 

Amoxicillin, 

Ampicillin 

Solid Phase 

Extraction 

LC-MS (100 mm 

× 2.1 mm) 

Particle size: 1.9 

μm   

0.1 -167.2  

0.03 -50.6 
70–120 [166] 

https://doi.org/10.33263/LIANBS143.200
https://nanobioletters.com/


https://doi.org/10.33263/LIANBS143.200  

 https://nanobioletters.com/  17 of 38 

 

Matrix Antibiotics studied 
Extraction 

method 

Analytical 

method 
LOD: LOQ (ng/L) Recoveries (%) Ref. 

WWTPs 

Clarithromycin   

Azithromycin 

Levofloxacin 

Oasis HLB -

Solid Phase 

Extraction) 

LC/MS/MS  C18 

(Agilent, (2.1 x 

150 mm) Particle 

size 5µm 

0.37  - 8.8 

1.2  - 29 
46-103 [167] 

HWW 

Clarithromycin Cilastatin  

Trimethoprim  
Ciprofloxacin 

Sulphapyridine 

Sulfamethoxazole 

Solid Phase 
Extraction 

HPLC -MS 

Column size:( 
150mm × 2 mm ) 

Particle size: 4 

μm 

 
550-3000000 

35000-43000 

61-10.0 [87] 

Surface 

water 

samples 

Chloramphenicol  

Thiamphenicol  

 Florfenicol  
Sulfadiazine  

Sulphapyridine  

Sulfamethoxazole 

Sulfathiazole  
Sulfamerazine  

Sulfamethazine  

Norfloxacin 

 Ciprofloxacin 
Enrofloxacin  

Ofloxacin  

Tetracycline  

Oxytetracycline 
Chlortetracycline  

Erythromycin  

Roxithromycin 

Solid Phase 

Extraction 

UPLC-MS/MS 
Column size (100 

mm x 2.1 mm 

Particle size:1.8 

µm 

0.01-1.18 

0.03-1.68 
62-129 [168] 

Raw and 

treated 

wastewater 

Ciprofloxacin 

Ceftazidime  

Meropenem 
Amoxicillin 

Lincomycin  

Clindamycin 

Erythromycin 
Azithromycin 

Clarithromycin 

Tylosin 

Trimethoprim 
Tetracycline 

Minocycline 

Chlortetracycline 

Oxytetracycline 

Solid Phase 

Extraction 

UHPLC-MS/MS 

C18 (3.0 mm 
100mm) 

Particle size: 2.7 

μm 

(5 -15) 84.5–105.6 [169] 

Wastewater 

(Industrial 

discharge & 

slaughterho

use) 

Sulfadimidine 

 Sulphapyridine 
Sulfadiazine 

Sulfamethoxazole 

Ofloxacin   

Doxycycline 

Solid  Phase 

Extraction 

HPLC-ES-

MS/MS 
C18 column (150 

mm x 2.1 mm) 

Particle size:3.5 

μm 

0.02-0.08  

0.05-0.2 
61-89 [170] 

Wastewater

s 

Clarithromycin 
Trimethoprim 

Solid  Phase 
Extraction 

LC-MS/MS 

Column size:(50 
mm × 2.1 mm) 

Particle size:5µm 

0.76-3.6 88-91 [171] 

Raw 

hospital 

wastewater 

Trimethoprim  

Spectinomycin  

Ampicillin  
Oxacillin 

Sulfamethoxazole 

Sulfamethazine 

sulfadiazine 
Sulphonamides 

Penicillin 

Erythromycin 

Tetracycline 

Solid Phase 

Extraction 

LC-MS/MS 

Column size:(50 

mm × 2.1 

mm)Particle 
size:1.8µm 

 

0.005-0.04 

0.017-0.220 

68-111 [56] 

Wastewater 

samples 

(from 

public 

hospitals) 

Ampicillin 
Sulfamethoxazole 

Solid Phase 
Extraction 

(LC-MS/MS) 

CS12A (4x250 
mm) 

Particle size: 2.6 

µm) 

20-590 
70-1800 

72.1-97.4 [172] 
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Other modern methods also exist for detecting antibiotics. ELISA is a well-known 

method for screening antibiotics. The sensitivity of this test depends on the reaction’s strength. 

Different enzymes, including D-glucose oxidoreductase, peroxidase, pyruvate dehydrogenase, 

alkaline phosphomonoesterase, and β-galactosidase, are employed. The color reaction occurs 

when the enzyme catalyzes the substrate, and based on the reaction, an observation is made.  

Various ELISA methods have been developed for the detection of antibiotic residues, including 

fluoroquinolones, chloramphenicol, tetracyclines, and sulfonamides [173]. An ELISA method 

has also been developed for detecting penicillin in milk samples [174]. Another sensitive 

ELISA method has been devised to detect 1-amino-hydantoin in fish, shrimp, pork, and chicken 

samples. For the detection of banned antibacterial drugs, such as bacitracin and virginiamycin, 

in feed, ELISA has also been utilized [175]. 

Immunoassays have been utilized for screening various antibiotics in food samples, 

which depicts a concerning area in the antibiotic contamination research. Antibiotics such as 

β-lactamase inhibitors, Fluoroquinolones, Aminoglycosides, tetracyclines, sulfonamides, 

chloramphenicol, lincosamides, and macrolides have been detected in various food matrices, 

including milk, beef, chicken, pig muscles, fish, eggs, honey, and different animal feeds, using 

the ELISA technique. There are other reports and studies utilizing different techniques, such 

as radio-labeled antibody assays and gold nanoparticle-based lateral flow assays, as well as 

other BIOCHIP/APTA biosensor methods, for detecting antibiotics in various food matrices, 

including milk, wastewater, honey, eggs, swine, fish, and sea cucumber. Immunoassays are 

utilized for the detection of antibiotics, as they offer advantages such as high sensitivity, low 

cost, reduced labor intensity, ease of use, on-site screening, and improved throughput [173]. 

A chemiluminescent immunoassay is a type of assay in which a reaction occurs between 

the luminescent enzyme and substrate, or between the antigen and antibody, based on a 

chemiluminescent reaction. This method has been widely utilized for antibiotic detection. 

Different labeling enzymes, such as ALP (alkaline phosphatase) and HRP (horseradish 

peroxidase), are used as substrates in studies involving TMB (tetramethylbenzidine)/Luminol, 

among others. This technique has been widely used for the determination of macrolides in 

plasma and phosphate-buffered saline [176]. Additionally, the use of a multi-analyte chip 

immunoassay for the simultaneous screening of four different antibiotics has been reported 

[177]. Moreover, radioimmunoassay is a type of assay that uses isotope-labeled and unlabeled 

antigens that react competitively with antibodies developed in a modified RIA method for the 

screening of TCs in serum, urine, milk, and tissue, and also in environmental samples [178].  

Furthermore, fluorescence immunoassay/ fluorescence polarization immunoassay is a 

method that utilizes a fluorophore linked to a specific antigen to detect and identify antibiotics 

using a fluorescent method. This method has been used to detect sulphonamides, tetracycline 

β-lactamase, quinolones, Chloramphenicol, Streptomycin, Erythromycin, Spiramycin, 

Tilmicosin, Tylosin, Clenbuterol, and Ofloxacin [179]. A one-step method for determining 

fluoroquinolones based on the production of monoclonal antibodies has also been developed 

for detecting cefalexin, cefadroxil, clinafloxacin, and gentamicin [180]. Additionally, colloidal 

gold immuno-chromatographic assay (CGIA) has been employed for detecting tetracycline, 

sulfonamides, and quinolone residues in milk samples. Another CGIA method for detecting 

streptomycin residue in milk and swine urine was reported [181].  

A study has also reported the development of a kit based on a lateral flow antibody-

based assay for the simultaneous detection of fluoroquinolones, β-lactam antibiotics, 
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sulfonamide derivatives, and tetracyclines in fish samples, utilizing antigen and antibody 

interactions [182]. 

There have been major developments in the past few years in the detection of antibiotics 

and their residues. Techniques such as chip technology, immunosensors, and surface plasmon 

resonance-based immune technology have been explored for detecting antibiotic residues. 

Biochip assay is another emerging technique based on receptors. The biochip method has been 

reported for detecting residues of aminoglycosides, macrolides, and lincosamides in honey 

samples across various concentration ranges [183].  

6. Remediation Strategies for Antibiotic Waste 

Proper waste management practices are essential to prevent harm to human health and 

the environment. Various approaches, such as prevention, minimizing production, reusing, 

recycling, energy recovery, and proper disposal, can be employed to manage pharmaceutical 

waste effectively [184]. There are well-established methodologies used in various research 

studies for removing antibiotics from different matrices, including hospital wastewater, 

domestic wastewater, water reclamation facilities, synthetic wastewater, laboratory 

wastewater, and aquaculture wastewater [12]. Conventional strategies for antibiotic removal 

encompass physical, chemical, and biological methods, including settling/precipitation, 

flocculation, membrane separation, sorption and biosorption onto activated carbon, the 

activated sludge process, and chemical disinfection. The chemical-physical removal methods 

include the removal of antibiotics by substrates like zeolite, shucks, and volcanic rock, 

followed by other adsorption methods. It also includes the utility of nanoparticles coated with 

different polymers, such as liposomes or dendrimers, for removing antibiotics [185]. 

Another technique is adsorption, which can remove antibiotics from environments such 

as soil, sediments, and naturally occurring minerals [186]. ZnCl2-modified biochar, activated 

carbon, multi-walled nanotubes, and graphene oxides have been utilized in various studies for 

the efficient adsorption of antibiotics [187]. Likewise, hydrolysis is another technique that can 

be used for the degradation of organic substances, such as amides and esters. Furthermore, UV-

visible irradiation from sunlight also plays a crucial role in degrading certain antibiotics in 

aquatic water bodies. Another method involves the Adsorption method using Activated 

Carbon, which has been reported to be effective for removing most antibiotics [188]. Studies 

have utilized fine-grain activated carbon and large-particle activated carbon for the removal of 

antibiotics from hospital wastewater and other wastewater sources. Other studies have utilized 

emerging methods like the use of zeolites [189]. Methods such as electrochemical oxidation, 

ozonation, and the Fenton process employ the same principle of producing free radicals for 

removing antibiotic residues, but through different processes [190]. 

Other removal methods involve membrane-based separation techniques and advanced 

oxidative treatments, such as ozone oxidation, ultraviolet degradation, photocatalytic 

oxidation, and Fenton chemistry[191]. Microbubble (MB) based multiple approaches have 

been developed for the elimination of diverse ecological pollutants. These microbubbles, due 

to their properties such as surface area and durability, were employed in ozone oxidation to 

eliminate pollutants [192]. Additionally, methods like UV/H2O2 are conventional and utilize 

UV to produce hydroxyl radicals via H2O2, which can scavenge antibiotics. Additionally, 

technique like membrane technology is based on reverse osmosis, which is promising as they 

are capable of removing a broad range of pharmaceutical compounds. Moreover, a combination 

of membranes with oxidation processes has the capability for efficient removal [193]. 
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Furthermore, remediation strategies have been reported in various studies, like 

oxidative remediation (chlorination, advanced oxidation, ozonation, fentanyl process, 

photolysis, photocatalysis, electrochemical processes), adsorption, membrane filters, 

bioremediation (using bacterial methods, fungal methods, algal methods, phytoremediation, 

microbial fuel cells, bioreactors, and enzyme filters), and hybrid methods [194].  

Furthermore, filtration methods such as Ultrafiltration (UF), Nanofiltration (NF), and 

Reverse Osmosis (RO) have also been reported for the removal of antibiotics [50]. Moreover, 

another suitable method is the utilization of biowaste, such as sawdust, green nano-adsorbents, 

biochar, and microbial fuel cells, which have also been employed for the effective removal of 

antibiotics from waste [195].  

Other emerging studies discuss the potential of nanotechnology. Nano-photocatalytic 

degradation studies of antibiotics using different nano-photocatalysts have shown potential for 

the degradation of various antibiotics [196]. Different antibiotics have been remediated using 

nano-photocatalytic activities from aquatic ecosystems, such as Penicillin G, Tetracyclines, 

Ofloxacin, Amoxicillin, and Ciprofloxacin [196].  

Another emerging area of research is biodegradation, which utilizes microbial 

degradation to remove antibiotics [197]. Biodegradation of antibiotics occurs due to two 

factors: biotic and abiotic factors. The biotic factors include the microorganisms, and the 

abiotic factors contribute to the hydrolysis, sorption, oxidation, photolysis, and reduction. 

[198]. Moreover, bioremediation can be performed either ex-situ or in-situ. The in-situ 

bioremediation method leads to the removal of contamination on the spot, whereas the ex-situ 

method involves removing the contaminants elsewhere [199]. Recently, algae have been 

widely used for bioremediation of antibiotics due to their cost-effectiveness, non-intrusiveness, 

safety, and effectiveness in removing antibiotics. Moreover, biochar is another useful adsorbent 

derived from the pyrolysis of biomass rich in carbon, which is used for the removal of 

antibiotics [200]. 

 
Figure 4. Different detection and remediation methods are used in antibiotic studies. 

Interestingly, enzyme-based biodegradation is an environmentally friendly approach, 

as it offers economical and exceptionally effective strategies for removing environmental 

pollutants. Enzymes such as lignin-degrading peroxidases, phenoloxidases, horseradish 

peroxidase, manganese-activated peroxidases, and polyphenol oxidases have been developed 
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to achieve this [201]. A study has engineered an innovative hybrid bioreactor by integrating 

immobilized laccases with tyrosinase enzyme aggregates on a microfiltration membrane for 

the removal of pharmaceutical compounds [202]. Figure 4 below summarizes some of the 

common detection and remediation techniques used in antibiotic studies.  

7. Discussion 

Antibiotics are typically present in surface water at extremely small concentrations, 

typically in the nanograms per liter level or even lower. Since routine monitoring would not be 

practical or affordable, identifying such minute quantities requires extremely sensitive 

analytical methods and equipment. The detection and evaluation of antibiotics may also be 

hampered by the presence of several organic and inorganic components in surface water 

samples [203]. Surface water contains a wide range of antibiotic classes that originate from 

various sources, including human and animal waste, agricultural runoff, and pharmaceutical 

production. It can be challenging to assess the toxicity of an antibiotic and comprehend the 

effects of multiple antibiotics when used in combination [204]. 

Studies should be conducted to explore antibiotic pollution and its correlation in the 

aquatic environment, taking into account other environmental factors. Monitoring of point and 

non-point sources of antibiotic contamination is necessary to raise awareness about antibiotic 

pollution in aquatic water bodies. It is essential to develop a strategic plan for conducting 

monitoring studies at relevant locations, followed by the enhancement of the performance of 

existing wastewater treatment plants. More studies need to focus on the ecotoxicological 

research of antibiotics in the environment. 

Moreover, surface water samples are complex matrices that contain various ions, 

dissolved organic matter, and suspended particles. These matrix components may influence the 

extraction, separation, and detection of antibiotics, potentially impairing the analysis's 

sensitivity and accuracy. Beta-lactams, fluoroquinolones, macrolides, and sulfonamides are a 

few examples of the numerous types of antibiotics that exist, each with distinct chemical 

properties. To build a comprehensive strategy for monitoring all antibiotics, it may be 

necessary for each class to have its unique analytical procedures for detection [205]. 

Antibiotics in surface water can undergo various transformation processes, such as 

photodegradation, hydrolysis, and microbial degradation. When compared to the parent 

molecules, these activities may result in the formation of metabolites or degradation products, 

each of which may have unique chemical properties and detection challenges [206]. Assessing 

the ecological relevance of antibiotic toxicity studies is crucial to understanding the potential 

impacts on ecosystems. However, replicating real-world scenarios in laboratory experiments is 

difficult, and extrapolating results from controlled environments to complex aquatic 

ecosystems can be challenging [206]. Current regulatory frameworks often focus on human 

health risks associated with antibiotics rather than their ecological impacts. Limited regulatory 

guidelines and monitoring programs specifically targeting antibiotics in surface water can 

hinder comprehensive toxicity assessments and appropriate management strategies [207]. To 

address antimicrobial resistance (AMR), several regulatory frameworks and initiatives have 

been established at the regional and global levels. The European Union's Water Framework 

Directive requires the monitoring and regulation of pollutants, including pharmaceuticals, to 

ensure the protection of water quality. Similarly, the Drinking Water Directive provides 

stringent standards for microbiological and chemical parameters in drinking water. Moreover, 

WHO's Global Action Plan on AMR outlines a strategic approach to combat AMR through a 
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One Health framework, addressing human, animal, and environmental health. These 

frameworks underscore the importance of coordinated efforts and stringent policies in 

mitigating the spread of AMR [208]. 

One reason for antibiotic pollution may be related to national income. Low-income 

countries often have limited access to wastewater treatment plants, resulting in a higher 

concentration of antibiotics in the environment [156]. 

Insufficient removal of emerging molecules in treatment facilities also results in the 

passage of polluted water into surface water systems (Lakes, Ponds, Rivers, and inland water), 

which could pose serious ecological and health risks to the ecosystem. The public's acceptance 

of the wastewater reuse guiding policies needs to be increased. For example, amoxicillin levels 

varied significantly, ranging from below detection limits to 0.1726 µg/L during treatment, and 

then decreased to below detection limits to 0.0625 µg/L after treatment, considering the 

development of compounds, such as antibiotics, in the water sources [47]. 

Furthermore, one of the major challenges is to calculate the amount of exposure per 

amount of antibiotics present in water used for drinking, and determining the potential risks to 

human health has been hindered by the dearth of data concerning the large variety of human 

and veterinary drugs now in use. Monitoring projects are resource-intensive with costs, people 

requirements, and infrastructure. In addition to the problem, there are no standardized sampling 

and analytical methodologies to support monitoring research. Therefore, to comprehend the 

impact of low levels of pharmaceuticals in drinking water on human health, future research 

should focus on developing practical methods for prioritizing pharmaceuticals within an overall 

risk assessment [209]. Research on the occurrence of antibiotics in various regions can 

contribute to understanding the global status of antibiotic pollution. The biotransformation and 

bioaccumulation mechanisms of these antibiotics in aquatic species and higher-order 

organisms require in-depth exploration. 

Comprehensive toxicity data for many antibiotics, especially in environmental 

contexts, are limited. Toxicity studies have primarily focused on acute effects and a few 

commonly used antibiotics, while long-term and chronic effects, as well as the potential 

ecological impacts of exposure, are not well understood for many antibiotics. There is no 

standardized protocol or test specifically designed for assessing the toxicity of antibiotics in 

surface water [210]. Existing toxicity testing methods, such as acute and chronic toxicity tests 

with aquatic organisms, do not fully capture the complexities and long-term effects related to 

environmental exposure to antibiotics. 

Molecular-level studies should be encouraged to identify pathways and biomarkers 

involved during antibiotic exposure from the environment, the toxic impact of antibiotics, the 

metabolic pathways involved, and the epigenetic alterations that occur during contamination 

[211]. The co-existence of antibiotics with other toxicants also needs to be evaluated to assess 

toxic impacts [212]. Moreover, antibiotics can function in various ways, including preventing 

the development of bacterial cell walls, delaying protein synthesis, and interfering with DNA 

replication. Hence, identifying the precise processes by which antibiotics cause harm to non-

target organisms and ecosystems is a challenging endeavor that requires in-depth study and 

analysis [213].  

Antibiotic toxicity may be influenced by several environmental factors, including pH, 

temperature, exposure to sunlight, and the presence of other compounds or contaminants in the 

water. These factors can affect the stability, bioavailability, and toxicity of antibiotics, making 
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it challenging to isolate and evaluate their individual effects [213]. Hence, research in this area 

also needs to be explored. 

LC with MS is currently the most capable method for antibiotic identification, which 

opens further research areas to improve antibiotic detection. Various mass spectrometers are 

used for the analysis of antibiotic residues, such as single-quadrupole (Q), linear ion trap (LIT), 

time-of-flight (TOF), and quadrupole ion trap (QIT) [214]. Similarly, UV/visible spectroscopy 

has been widely used for antibiotic analysis, Cefazolin, Ceftazidime, Meropenem, Ceftriaxone, 

Dicloxacillin, Ertapenem, Cephalothin, Benzylpenicillin, Flucloxacillin, Piperacillin, 

Ampicillin, and Ticarcillin [215]. Hence, method development using chromatographic 

techniques can provide better detection limits for the detection of antibiotics in our 

environment.  

Additionally, several studies have reported that the most popular method for detecting 

antibiotic residues is liquid chromatography combined with tandem mass spectrometry. Other 

studies have reported the use of UPLC-MS/MS for detecting daptomycin content in human 

plasma and breast milk [216]. Moreover, gold nanoparticles (AuNPs) possess useful optical 

properties and a high extinction coefficient, making them suitable for the identification of 

different ions and small molecules [217]. The quantity of cefixime has been measured by 

several researchers using an AuNP solution via SPR. Other applications of gold nanoparticles 

include the determination of kanamycin, which holds a promising future [218]. 

Moreover, a study has proposed a bifunctional, chemically customized polymer-based 

sensor for the rapid colorimetric and fluorescence identification of norfloxacin in water 

samples [219]. Additionally, scientists have developed a cellulose-supported microchip for 

tagging functional nucleic acids, combined with a rival fluorescent lateral-flow assay for 

identifying ampicillin [220]. A study has also proposed a chemiluminescence method, 

employing a fluorometric assay with ruthenium chloride (IV) and methoxylated Cypridina 

luciferin analogs (MCLA) to determine fluoroquinolone compounds in milk [221]. Another 

investigation introduced nanocomposites (IL/Chit@MGO) derived from biofunctionalized 

ionic liquids, chitosan, graphene oxide, and magnetic nanoparticles, which were applied in 

chemiluminescent aptamer-based sensors for tetracycline detection [222]. 

Moreover, ELISA is an inexpensive and rapid monitoring tool capable of detecting 

antibiotics and their by-products in water samples, and their use should be encouraged. 

Additionally, these tests require a small sample volume and are portable in the field. Other 

emerging techniques for detecting antibiotics include pulsed electrochemical detection (PED), 

charged aerosol detector (CAD) [223], and evaporative light scattering detector (ELSD) [224]. 

These are promising techniques that require further exploration. Future studies for antibiotic 

analysis should focus on the areas of green solvents and green extraction techniques. More 

research should also focus on photolysis, which is used for the removal of antibiotics. In many 

scenarios, the toxicity of photoproducts has not been explored, providing a research 

perspective. 

Research should focus on the development of methods with high throughput, high 

sensitivity, and improved sample pretreatment for the rapid processing and detection of 

antibiotics in environmental matrices. Additionally, research is needed to investigate the 

integration of various detection methodologies to enhance the detectability of antibiotics in 

environmental samples [225]. Lastly, low and middle-income countries lack skilled medical 

workers and focus less on monitoring antibiotic usage, leading to their occurrence in food 

products and the environment [226]. 
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8. Conclusion  

The scope of antibiotic contamination is not new, but modern integrative sciences are 

required to bring novelty to tackle this problem. The review discussed the issue of antibiotic 

contamination in aquatic water bodies, on which most life depends. This review encompasses 

various sources that contribute to the contamination of aquatic water bodies. Furthermore, it 

provides recent examples of the global burden of antibiotic contamination, as well as the 

important model organisms used for assessing its toxicity. It discusses both traditional and 

modern remediation strategies. Antibiotics have been used widely in our society for years since 

their discovery. Regulations need to be implemented to address the overuse of antibiotics, 

safeguarding the environment and the health of humans and animals from antibiotic pollution 

in aquatic water bodies and their misuse. International Organizations need to encourage 

countries to reduce their antibiotic usage in humans and animals to a minimum. Additionally, 

emphasis needs to be placed on surveillance and research of antibiotics to strengthen the 

healthcare and regulatory sectors.  Awareness of the public sector in this aspect needs to be 

explored as well.  Studies should be encouraged on the monitoring of antibiotics and their 

byproducts in the environment to evaluate their health effects. Global guidelines need to be 

developed for the rational use of antibiotics. Adequate training and strict infection-control 

parameters need to be established to minimize and control antibiotic pollution. Specific 

legislation and guidelines need to be established and implemented to tackle antibiotic 

prescriptions at hospitals, as well as the proper disposal and collection of unused or expired 

drugs, which also require regulation. 

Traditional extraction methods employ harmful solvents that are not environmentally 

friendly, raising concerns about indirect environmental pollution. Future studies on antibiotic 

analysis should also focus on areas of green extraction methods using environmentally friendly 

solvents to prevent indirect environmental contamination. Innovative studies, such as 

systematic surveillance for environmental monitoring at the regional level, should be 

encouraged to foster a comparative research environment for understanding the environmental 

contamination of antibiotics. 
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