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Abstract: Antibiotics have revolutionized modern medicine, but their availability and indiscriminate
use have led to persistent contamination of aquatic ecosystems. Significant quantities of domestic
sewage. Reports suggest that antibiotic concentrations range from nanograms per liter (ng/L) to several
micrograms per liter (ug/L) in surface waters globally. Such contamination has significantly contributed
to the development and spread of antibiotic-resistant microorganisms and genetic determinants of
resistance, often through mechanisms such as horizontal gene transfer. This poses a serious risk to
aquatic life and human health. Hence, this review focuses on the major sources of antibiotic pollution
and their toxicological effects on model organisms, such as Daphnia magna, zebrafish, and C. elegans,
as well as current detection methods, including LC-MS/MS and biosensors. We also discuss
remediation strategies like advanced oxidation processes (AOPs), membrane filtration, and
bioremediation. Despite technological progress, regulatory enforcement and public awareness remain
limited. Hence, this review also describes an in-depth discussion on the areas requiring future research
and the urgent need for integrated policy, advanced analytical monitoring, and sustainable management
practices to mitigate antibiotic contamination in aquatic environments.
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1. Introduction

The chemical substance generated by bacteria to kill other bacteria or germs was
characterized as an “antibiotic”, as stated by S.A. Waksman in 1947. However, the various
methods by which modern antibiotics are produced and used have significantly altered this
concept. Now, antibiotics are defined as any chemical, synthetic, natural, or organic material
that stops the development of infections [1].

Antibiotics are a group of drugs used to treat bacterial illnesses [2]. They function by
eradicating or slowing the growth of bacteria, thereby empowering the body's immune system
to fight off various illnesses. These pharmaceuticals adhere to bacterial cells and interfere with
their molecular mechanism for protein production, nucleic acid synthesis, or metabolic
pathways [3]. They interfere with vital functions and disrupt the bacteria's ability to replicate,
grow, or survive, ultimately leading to their elimination by the immune system [4].
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In downstream water, the concentration of antibiotics is higher due to the discharge
from wastewater treatment plants. Similarly, the antibiotic concentration in river water is
higher in areas near urban regions than in rural areas due to the high population and various
anthropogenic activities [5]. Additionally, when surface water is considered, the antibiotic
concentration is comparatively lower due to dilution from water or adsorption in suspended
solids. Moreover, the occurrence of these antibiotics varies considering different seasons [6].
When the marine environment is considered, the concentration is lower due to the dilution
process through deposition, degradation, and/or exchange of antibiotics between coastal waters
and the open sea. Finally, the association of antibiotics with groundwater depends on the
variability of the season. For example, during the season of heavy rainfall, there is potential for
groundwater runoff into surface water, which may create a dilution effect leading to low
antibiotic concentrations.

A study highlighted the importance of monitoring emerging contaminants and
developing efficient treatment options to mitigate antimicrobial resistance (AMR) and remove
these toxins from water sources [7]. Also, a reported study found that antibiotic concentrations
were discovered to be in the low to medium range. Yet, they could still pose a hazard to the
environment and contribute to the development of antimicrobial resistance. Moreover, it was
also reported that more than 70% of all medications used on animals and 6% in the case of
people were antibiotics [8].

To select the most suitable antibiotics, it is essential to consider various parameters,
including the nature of the infection, bacterial susceptibility, and safety considerations.
Antibiotic medication was originally used to treat bacterial infections in humans, animals, and
plants. Some of these illnesses are infections of the respiratory pathways, infections in the
urinary tract systems, dermatosis, Sexually Transmitted Infections, Surgical Prophylaxis, and
Bacterial Meningitis [9]. According to a study, Eastern Europe and Central Asia had the
greatest rates of antibiotic use, while Sub-Saharan Africa had the lowest rates [10]. According
to a 2016 study, the estimated global consumption of antibiotics is 14.3 billion, with a 95%
consumption rate. Additionally, research conducted in North Africa, the Middle East, and
South Asia revealed high consumption rates for particular antibiotic classes [11].

The production of antibiotics is increasing rapidly due to high population growth in
Asia, the USA, Africa, Europe, and Australia. Certain wastes (antibiotic residues) generated
during the manufacture of antibiotics in the pharmaceutical industries are sent to treatment
facilities, while others are released straight to water sources without sufficient treatment. These
antibiotics can break down into a variety of metabolites on water surfaces, interact with other
metabolites, or react with other substances, forming complexes or other toxic agents that can
give rise to cancer-causing chemicals, which can be extremely lethal to humans and aquatic
life [12].

Although less harmful than other contaminants, the presence of antimicrobials in water
habitats can nonetheless alter the habitat or ecosystem of microorganisms and other aquatic
animals in these environments, resulting in the encouragement of multidrug resistance in
bacteria. According to studies, antibiotics present in aquatic environments can lead to
modifications in bacterial communities, which can create and spread drug-resistant genes [13].

The current review sheds light on the occurrence of antibiotics in aquatic environments
from various sources and their toxicological consequences on different model organisms,
followed by a detailed discussion about the risks of antibiotics found within aquatic
ecosystems. Subsequently, we describe the advanced techniques currently applied for the
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identification of antibiotics. Further, this paper has also discussed the remediation methods
currently available to tackle antibiotic pollution. Moreover, in-depth discussions have also been
conducted on areas requiring further improvement and research regarding the present topic.

2. Sources of Antibiotic Contamination in the Aquatic Environment

Antibiotics can enter our environment from various sources, potentially leading to
deleterious effects on humans and animals [14-17]. Figure 1 below highlights the various
routes of antibiotic contamination in the aquatic environment and its impact on humans and
animals.
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Figure 1. Sources of antibiotic contamination in the aquatic environment and their impact.

2.1. Household and municipal wastes.

The term "municipal waste" refers to garbage produced or discarded within a city and
subsequently disposed of at a municipal landfill. In addition to debris from building and
demolition operations, this garbage also includes waste from homes, companies, hospitals, and
other organizations. Over time, certain medications, such as antibiotics, may be inadvertently
combined with other types of municipal waste that have been discarded, posing a risk of
environmental contamination and potential harm to living organisms. The danger of acquiring
antibiotic resistance rises when outdated or unused drugs are improperly disposed of in the
environment [18]. Antibiotics and antibiotic-resistant bacteria may be present in areas where
municipal waste is disposed of. These antibiotic-resistant bacteria may spread through
leachates, posing a serious threat to the ecosystem. Inevitably, it is not possible to determine
the susceptibility of antibiotics in bacterial communities due to the widespread transfer of
municipal waste in terminals nationwide [19].

A study found that in low-income settings, wastewater is primarily composed of feces
and urine, which contain excreted pharmaceuticals and often end up in on-site sanitation
systems, such as pits, latrines, septic tanks, and even the environment in the case of open
defecation [20]. However, there is a possibility of pharmaceutical pollution in groundwater
sources, including those used for drinking water supply, due to strong hydrological connections
between pit latrines and groundwater systems [21].
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Furthermore, customers may run the risk of health problems if they dispose of their
unwanted pharmaceutical waste in the toilet or washbasin. In a study conducted in the
Malaysian town of Selangor, it was found that the vast majority of participants, approximately
81.6% of respondents, admitted that storing their unused and expired medications at home is a
risk. Regarding the notion that improperly discarded pharmaceutical waste may impact surface
water, 73.4% of participants agreed with this concept [22].

2.2. Agricultural sources.

The degree to which pharmaceutical residues adhere to soil solid fragments, such as
organic matter, influences their behavior and persistence in the soil. The amount of sorption
influences the accessibility of the medication's active ingredients as well as their persistence in
the soil [23].

In a study conducted in Pakistan, it was discovered that a significant majority (85%) of
the farms lacked a proper wastewater drainage system. As a consequence, poultry waste and
antibiotic residues were directly released into the surrounding environment. Antibiotics seep
into the soil and subsequently reach the groundwater [24]. Antibiotic drugs administered to
livestock are present in their manure and are used as fertilizers for agricultural purposes, which
may result in veterinary medicines entering water bodies through leaching [25]. Soil leaching,
wastewater discharge into surface waterways, and agricultural runoff result in antibiotics being
present in groundwater, indicating that they have been filtered through the soil strata and
influenced by rainfall events [26].

In another research report, it was found that 66% of poultry farmers also maintained
other kinds of animals. The majority of individuals store their medications in cabinets or
drawers and in a convenient location, such as a refrigerator. Furthermore, improper disposal of
unused medications in household trash can result in antibiotics ending up in landfills [27]. Over
time, leachate from these landfills can carry residues that infiltrate the nearby soil and water
bodies [28].

Different farming techniques have been adopted to meet the demand for animal proteins
in emerging countries. This has led to the inclusion of residual antibiotics in goods obtained
from animals, resulting in an increase in antibiotic resistance. Such resistant bacteria can lead
to serious public health issues because these diseases are transmissible from animals to humans
via the food supply distributed in the natural world [29].

Agricultural runoff can lead to the pollution of terrestrial water and groundwater
aquifers [30]. Similarly, in aquaculture, antibiotics are used to prevent infections in fish
populations, and these compounds can escape from fish farms into surrounding water bodies,
contributing to contamination. Urban areas with dense populations often exhibit significant
antibiotic usage. During rainfall, stormwater runoff can carry antibiotics from urban surfaces
into nearby water bodies. This runoff has been observed to contribute to the introduction of
pharmaceutical residues into water surfaces, including dams, rivers, and lakes [31].

2.3. Medical wastes.

People's health was at risk when medical wastes were improperly disposed of during
the pandemic [32]. To avoid direct discharge into aquatic bodies, medical waste is
conventionally treated via landfill and incineration. Improper medical waste disposal can lead
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to contaminants entering groundwater and surface water through infiltration and runoff,
potentially contaminating these water supplies [33].

It is now known that improper handling of medical waste can lead to environmental
contamination and pose risks to water, air, agricultural products, the food chain, and livestock.
Proper management and disposal of medical waste have become a debated and significant issue
due to the ongoing rise in pharmaceutical use, and the disposal of leftovers or outdated
pharmaceuticals ending up in sewage systems. In response to this issue, several nations have
put in place pharmaceutical waste collection systems [34]. The necessity of measuring public
awareness of this issue, as well as educating consumers about responsible drug use and the
proper disposal of leftover or expired pharmaceuticals, must be critically addressed [35].

A previous study found that approximately 53.9% of respondents disposed of their
stored medications in conventional trash cans alongside other solid waste. The most typical
way for individuals to dispose of unneeded medications is in standard trash cans [36].
Comparatively, the study found that the practice of flushing unwanted medications down the
toilet or draining or disposing of them with regular solid waste (3%) is uncommon in developed
countries [37].

Medical waste belongs to a unique group of hazardous contaminants, and during public
health emergencies, improper treatment might lead to secondary environmental pollution. Even
in the absence of a pandemic, the large population expansion is expected to drive more than a
50% rise in medical waste output by 2030. Due to a significant portion of the larger population
and gross domestic product (GDP), the eastern region generated more medical waste than the
western region. However, the amount of household consumption alone determines the per
capita medical waste output, which is not impacted by any regional features [38].

2.4. Industrial wastes.

The pharmaceutical industry has experienced significant growth in recent years due to
the high demand for drugs to treat various diseases worldwide. This increased demand is a
result of the growing global population and the prevalence of acute and chronic illnesses [39].
Unfortunately, the growth of these industries has led to the pollution of surface water through
multiple means. During the manufacturing processes of pharmaceutical products, a wide range
of chemicals, solvents, and reagents are utilized. When these substances mix with wastewater,
they can come into contact with surface water after being discharged from wastewater
treatment points [40]. In certain scenarios, pharmaceutical waste is partially treated and
released, increasing the likelihood of environmental contamination with pharmaceutical
residues [41].

Spills and leaks from pharmaceutical manufacturing industries can also lead to
environmental contamination from these residues. Leaked pharmaceutical ingredients may
eventually be washed into rivers, lakes, or oceans by running water [42]. Additionally, the
presence of pharmaceutical compounds in drinking water can originate from two sources: the
production processes of the pharmaceutical industry and the common use of pharmaceutical
compounds, resulting in their presence in urban and agricultural wastewater [43].

Wastewater in pharmaceutical manufacturing industries arises during the synthesis and
production of drugs. The production of active pharmaceutical ingredients involves various
chemical reactions, leading to the generation of wastewater. The quantity and composition of
this wastewater can vary based on factors like plant location, raw materials used, and the
manufacturing processes employed [44]. The diversified nature of the pharmaceutical industry
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makes it challenging to implement a standardized treatment system for managing these
wastewater streams [45]. Inadequate treatment of these effluents can lead to the direct release
of antibiotics into the aquatic environment. The pharmaceutical industry's rapid growth has led
to various pollution pathways in surface water. To mitigate this issue, pharmaceutical
companies need to implement proper waste management practices and invest in effective
wastewater treatment technologies to minimize the environmental impact of their operations.
Table 1 below highlights some important examples of the most commonly used
antibiotics globally, along with their associated contamination. The table highlights the specific
antibiotics studied and the maximum concentration of antibiotics detected from that source.
For example, in Korea, the composting aquatic system from swine manure detected the highest
concentrations of tetracyclines and sulfonamides. In India, multiple locations, including Delhi,
Kota City, and Ujjain, exhibit significant antibiotic contamination from the sewage system and
hospital wastewater, with residues such as ampicillin and cefpodoxime detected at the highest
concentrations. In Africa, sewage treatment plants and hospital wastewater have been identified
as the primary sources of antibiotic contamination in the environment, with high levels of
sulfonamides and fluoroquinolones. Furthermore, regions such as Southeast Queensland,
Australia, and Buenos Aires, Argentina, have reported significant amounts of
fluoroquinolones, sulfonamides, and macrolide antibiotics in rivers and industrial discharges.
In Europe, the most commonly detected antibiotics are macrolides and beta-lactams in the
wastewater system. These observations highlight the presence and distribution of antibiotics in

various aquatic systems within our environment.

Table 1. Some examples of the most commonly used antibiotics globally & their contamination.

Country/continent Sources Of.antl.bmtlc Studied antibiotics Maximum de?ected References
contamination concentration
. Swine manure Tetracyclines, Tetracycline
Korea (Asia) composting Sulfonamides (254.82pg/L) [46]
Delhi, India (Asia) Sewage system Beta-lactams Amp 1c;1gl;E)(104.2 [47]
. Sulfonamides, Beta- Trimethoprim
Bangladesh (Asia) Aquaculture lactams (41.67ug/L) [48]
Sulfonamides,
Kenya (Africa) Sewagelzrriatment Fluoroquinolones, Beta- | Norfloxacin (56pg/L) [49]
P lactams
Beta lactams,
B Quinolones,
South-East . Macrolides, Ciprofloxacin (>64
Queensland, Hospital samples . [50]
. Tetracyclines, ng/L)
Australia . :
Lincosamides,
Sulphonamides
Sulfonamides,
Bangzhou Bay, Quinolones, Tetracyclines (39.59
China Estuary aquaculture Tetracyclines, ng/L) [51]
Amphenicol
Bushehr City (Iran) Wastewater treatment Macrolide Azithromycin (896 [52]
plant ng/L)
Beta-lactams,
. . Hospital wastewater Cephalosporins, Cefpodoxime (3.24
Kota City (India) samples Floroquinoles, mg/L) [33]
Penicillins
.. . Kshipra is affected by Sulfonamide, Sulfamethoxazole
Ujain (India) industrial pollutants Fluroquinolones (4.66 pg/L) [6]
B-lactam,
Delhi-India Yamuna River Fluoroquinolone, Amoxicillin 13.75pg/L [47]
Cephalosporin
Macrolide, Sulfamethoxazole
China Songhua River Cephalosporins, [54]
- (73.1ng/L)
Floroquinoles
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Country/continent Sources of_antl.blotlc Studied antibiotics Maximum de?ected References
contamination concentration
Buenos Aires- Rivers and farm . .
Argentina wastewater Fluoroquinolones Enoxacin (22.1pg/L) [55]
I Sulfonamides, B-
Nalr(;é)énC(;unty, HWW lactams, Macrolides, Suliz;r(r)l%tho;(]ii)z ole [56]
y Aminoglycosides OKe
Kharkiv region- Surface water Macrolides Aczithromyein (30 [57]
Ukraine pg/mL)
Aminoglycoside,
Macrolides,
Africa Wastewater Quinolones, Sulfaglgethc/)ic; zole [58]
Tetracycline, HE
Trimethoprim
Macrolides, Azithromycin (1577.3
European Waste water Fluoroquinolones ng/L) [59]
. Tetracyclines, . .
Yellow- Sea in Surface water Sulfonamides, Ciprofloxacin (6.6 ng [60]
China . /L)
Fluoroquinolones
Mekong Delta, Freshwater Sulfonamides, Sulfamethoxazole (21 [61]
Vietnam-Asia aquaculture, Fluoroquinolones ng/L)
Wastewater treatment . .
Terahan-Iran plant (From hospital Cephalosporms, Cephalexin (977.7 [62]
Fluoroquinolones ng/L)
water)
Metronidazole,
BRAZIL-South Wastewater treatment Tetracyclines, Sulfamethoxazole [63]
America plant Sulfonamides, 1.374 ng/L
Fluoroquinolones
Macrolides,
USA-North Fluoroquinolones, Cephalexin
America Waste water Sulfonamides, (13.818pg/L) [64]
Cephalosporins
Lo . Hospital Wastewater . Ciprofloxacin (561
Nigeria-Africa Treatment Plants Fluoroquinolones ug/L) [65]

Chemicals used in the manufacturing process of pharmaceuticals are not completely
filtered out, allowing pollutants to leak into nearby water bodies and open fields. This results
in pollution when effluent from pharmaceutical facilities contaminates adjacent water bodies
and open fields, thereby increasing the amount of pharmaceutical waste in the ecosystem [66].
Most municipal wastewater treatment plants are unable to remove these chemicals from
drinking water, so they end up in rivers after being flushed down the toilet or excreted from the
body. This can lead to chronic exposure and major health problems [67,68].

Active pharmaceutical chemicals are found in over 50% of all the world's rivers at
concentrations that can have a serious negative influence on health. Significant pollution,
primarily from fluoroquinolones, was identified in a supplementary investigation that assessed
active pharmaceutical ingredients in the surface, groundwater, and drinking water, both
upstream and downstream of industrial discharge. Ciprofloxacin, for instance, was detected in
quantities ranging from 2500 to 10000 ug/L in rivers and lakes, and between 44 and 14000
ng/L in wells, indicating that pharmaceutical manufacturers' effluents can pollute water bodies
past the discharge point [69].

Other studies conducted in the Musi River, India, have pointed out that water bodies
typically contain antibiotics, and drinking water from these water bodies is crucial for human
survival. However, this contamination poses a significant health risk. The above study found
Fluoroquinolones at an alarming concentration; for instance, the concentrations of
ciprofloxacin, ofloxacin, and norfloxacin were 5015 pg/L, 542.4 pg/L, and 251 pg/L,
respectively [70]. It is noteworthy that the amount of antibiotics found in aquatic bodies
exceeds the EPA's (Environmental Protection Agency) recommended draft notification
thresholds, raising a red flag for water’s antibiotic regulatory bodies [71].
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For instance, in the investigation conducted in the Kshipra River in 2020 during the
pandemic, sulfamethoxazole was detected at a concentration of>4.66 pg/L. The scientists
found that it was crucial to routinely check the Kshipra River for antibiotic residues to prevent
the emergence of resistance, which jeopardizes the health of humans and other animals, as well
as the entire ecosystem [72]. In autumn, studies conducted on the river water found that
sulfamethoxazole was more prevalent in the water. Researchers also discovered norfloxacin
and ofloxacin in amounts of 0.66 g/L and 0.99 pg/L, respectively. In the fall season, the values
ranged from (0.74 - 5528 pg /L), and ciprofloxacin was identified as the most prevalent
antibiotic [73]. A similar study reported fluoroquinolone antibiotic concentrations in Musi
River water samples up to 6278 ug/L [70].

3. Antibiotic Contamination in the Aquatic Environment

Antibiotic residues enter our environment through various pathways, including the
removal of unmetabolized pharmaceuticals from organisms, such as humans and veterinary
animals, limited biodegradation capacity in microorganisms, inadequate disposal of medical
waste, and the release of pharmaceutical manufacturing waste [74]. Once present in our habitat,
antibiotics have serious negative effects on the ecology and facilitate the emergence of
antibiotic resistance, resulting in the spread of environmental contamination from antibiotic
residues [75].

Levofloxacin and azithromycin were identified as the primary contributors to
contamination in a study conducted in India. It's conceivable that the high concentration of
these drugs was caused by residents' use of drugs to treat seasonal ailments, including colds,
fever, and respiratory infections that are common in the winter [64].

In a study conducted by analyzing the Seine River in France, the authors reported the
presence of three antibiotics, namely Ofloxacin, Norfloxacin, and Sulfamethoxazole, at higher
concentrations. All antibiotics identified in this analysis exceeded the Ministry's draft notice
limitations, despite the investigation's limited sample size. The main source of antibiotic
residues in this river may be treated and untreated sewage from point and non-point sources
[76]. According to a reported study in Jianghan Plain, China, Erythromycin had the highest
detection frequency among all other antibiotics in water samples from surface sources in
different seasons, including winter, summer, and spring, with concentrations of 0.546 ug/L,
1.60 pg/L, and 0.772 pg/L, respectively. The issue of a smaller number of sewage systems in
lower-income countries can impact the exposure pathways [77]. Additionally, middle-income
countries discharge untreated sewage into water bodies and then use the water for irrigation
[78]. Manure spread on farms and runoff from agricultural fields introduce antibiotics to
surface and groundwater. In countries where manure is stored in manure lagoons, heavy rainfall
can cause antibiotics to enter the aquatic system. Moreover, accidental spillage of antibiotics,
their disposal, and atmospheric dispersal of manure and feed dust contaminated with antibiotics
can also be small sources of antibiotic contamination [79].

Residues of several antibiotics, including erythromycin (320.5 ng/L), ciprofloxacin (3
ng/L), metronidazole (1195.5 ng/L), clarithromycin (320.5 ng/L), norfloxacin (10 ng/L),
tetracycline (23 ng/L), ofloxacin (179 ng/L), trimethoprim (424 ng/L), and sulfamethoxazole
(326 ng/L), were detected in rivers like Tagus, Guadarrama, Jarama, Henares, Manzanares [80]
providing valauble insights on antibiotics pollution in these rivers. Similarly, the largest rivers
in Spain, such as the Llobregat and Ebro, were also reported to be contaminated with traces of
antibiotics [81]. Antibiotic contamination, including ciprofloxacin (653 ng/g), norfloxacin
https://nanobioletters.com/ " 80f38
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(5770 ng/g), oxytetracycline (652 ng/g), and ofloxacin (1290 ng/g), has been detected in the
Pearl, Hai, Liao, and Yellow Rivers in China [82]. Studies have also found varying
concentrations of antibiotics, such as ciprofloxacin, azithromycin, and sulfamethoxazole
(SMX), in wastewater, surface water, soil, and even drinking water, which could contribute to
the emergence of antimicrobial resistance in bacteria and pose a risk to both human and animal
health [21, 83, .

Even though one of the strongest natural filters for preventing contaminants from
entering freshwater is soil, due to anthropogenic activities, urban aquifers have become a
primary source of antibiotic pollution, contributing to the presence of antibiotic residues in
underground water. Nevertheless, the soil's proficiency in contamination, the extent of
retardation is determined by a combination of factors, including the physicochemical
properties, ambient concentration, and environmental nature of the pollutant [28]. For instance,
the highest concentration was found for ciprofloxacin (1.270 ng/L), followed by levofloxacin
(0.177 pg/L) and amoxicillin (1.50 pg/L) antibiotics in the groundwater of Spain. Additionally,
a study found that wastewater treatment plants (WWTPs) are the primary source of
contaminated drinking water, according to a study that revealed 72 distinct pharmaceutical
residues in Barcelona's underground water[85]. Additionally, the Llobregat delta (Catalonia,
Barcelona, Spain) was the subject of a three-year continuity study that confirmed
contamination, with the highest concentrations of ciprofloxacin (323.57 ng/L) in the delta, due
to poor sanitation, improper wastewater treatment, and the misuse of agricultural antibiotics
[86].

Furthermore, seawater has been found to have a lower concentration of antibiotics
compared to wastewater treatment plants and sewage water, with river confluences being the
primary source of antimicrobial pollution in rivers. Previous research has identified such
instances in Bohai Bay coastal waters, providing insight into how Bohai Bay’s ecological
disturbance was caused by the discharge of rivers contaminated with antibiotic residues [60].

Table 2 below highlights various contaminations of antibiotics in various aquatic
matrices. Wastewater samples revealed the highest detection of antibiotics, including
amoxicillin, ciprofloxacin, ofloxacin, sulfamethoxazole, and ampicillin, with concentrations
ranging from non-detectable to 495 pg/L. Followed by the hospital wastewater with the highest
concentration of antibiotics, including amoxicillin, ceftriaxone, amikacin, ofloxacin, and
ciprofloxacin, with concentrations up to 236.6 pg/L. Groundwater was mostly contaminated
with antibiotics, including sulfonamides, chloramphenicol, tetracycline, B-lactams, and
erythromycin, with concentrations ranging from 0.0001 pg/L to 100 pg/L. Surface water was
found to contain a wide range of antibiotics, including azithromycin, clarithromycin,
trimethoprim, ciprofloxacin, ceftriaxone, and metronidazole, with concentrations reaching up
to 5528 pg/L.

Table 2. Examples of Antibiotic Contamination in various aquatic matrices.

Matrix Detected antibiotics Concentration References
(ng/L)
Amoxicillin, Ciprofloxacin, ND- 0.1726,
Ofloxacin, ND-5.75, ND-
Wastewater Sulfamethoxazole, 17.84,0.024-7.3,
(Sewage Norfloxacin, Ampicillin, ND-2.75, ND- [7.47,63,64,73]
system) Naproxen, Trimethoprim, 51.82,4.5-
Levofloxacin, Azithromycin, 495.>0.023,
Metronidazole <1.374
Hospital Amoxicillin, Ceftriaxone, ND-236.6 [87,88]
wastewater Amikacin, Ofloxacin, 43
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Matrix

Detected antibiotics

Concentration
(ng/L)

References

Ciprofloxacin, Norfloxacin,
Levofloxacin,
Clarithromycin,
Trimethoprim,
Sulphapyridine,
Sulfamethoxazole

Groundwater

Sulfonamide,
Chloramphenicol,
Tetracycline, 3-Lactams,
Erythromycin,
Ciprofloxacin, Ofloxacin,
Sulfamethazine,
Sulfamethoxazole,
Azithromycin,
Ciprofloxacin, Norfloxacin,
Sparfloxacin, Amikacin,
Trimethoprim,
Clarithromycin,
Trimethoprim

1-100, <0.1944, >
0.1,<0.0001-0.034,
0.001- 0.816

[88-90]

Surface
water

Azithromycin,
Clarithromycin,
Trimethoprim, Ciprofloxacin,
Ceftriaxone, Ofloxacin,
Norfloxacin,
Sulfamethoxazole,
Metronidazole, Triclosan,
Carbamazepine, Ampicillin,
Ciprofloxacin, Gemifloxacin,
Sparfloxacin, Cefuroxime,
Naproxen, Sulfamethoxazole,
Trimethoprim, Erythromycin,
Keflex, Tetracyclines,
Roxithromycin,
Clarithromycin, Clindamycin,

ND -4.66, <5528,
0.2-0.93,9.44-
51.6, ND-5.38, 9.5—
263.3,0.2-0.93,
4.7-2500, 0.0547-
0.826, ND-35.5,
ND-3., 3e-5-
0.0171, 20<50, <1,
0.0571 -2.7966,
0.100 pg/L- 1.60,
0.004-0.021, 0.024-
73

[6,8,27,61,91-101]

Lincomycin, Miconazole,
Thiabendazole

*ND- Not Detected

4. Toxicity of Antibiotics

Antibiotics are pervasive environmental contaminants that, due to their high durability,
may have effects spanning multiple generations. Unfortunately, little is known about their
impacts across generations and possible pathways. Moreover, antibiotics encourage the
emergence of an emerging pollutant called antibiotic resistance [102—104].

One of the major reasons for antibiotic pollution is that many countries rely on septic
tanks for sewage disposal, which pollutes aquatic bodies. The leachate generated from
municipal solid waste landfills containing disposed antibiotics also leaches into the
groundwater, leading to the issue of antibiotic resistance genes (ARGs) and antimicrobial -
resistant bacteria (ARB) [29, 105]. Additionally, another issue with antibiotics is that they can
accumulate in the environment and subsequently in crops. Drugs being excreted from the
human body are also entering the environment through sewage [29, 105, . These
pharmaceuticals take a large amount of time to be eliminated, thus entering our food chain
[105] as shown in Figure 2.
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Figure 2. Schematic representation of the antibiotic resistance cycle in aquatic environments, showing entry of
antibiotics into the water bodies and promoting the proliferation of resistant bacteria and subsequent exposure to
living organisms.

These antibiotic-resistant bacteria can easily contaminate food and enter the bodies of
biological organisms, posing a major health challenge [107]. The propagation of AMR in the
environment is largely driven by Horizontal gene transfer (HGT) in natural ecosystems, which
is intensified by human activities [108,109]. Horizontal Gene Transfer (HGT) is one of the
most important mechanisms by which bacteria exchange genetic material, including antibiotic
resistance genes (ARGs), across individuals or species, bypassing the traditional mode of
inheritance. HGT occurs primarily through three mechanisms: transformation (the uptake of
free DNA fragments from the environment), conjugation (the direct transfer of plasmids
between bacterial cells via cell-to-cell contact), and transduction (the transfer of bacterial DNA
via bacteriophages) [110,111]. These processes enable bacteria to rapidly acquire and
disseminate resistance traits, contributing significantly to the spread of antimicrobial resistance
(AMR) [110,111], as illustrated in Figure 3.

Antibiotic Pathways into Aquatic Environments and

~ w Environmental AMR Propagation
o

Pharmaceutical Industry
waste water

Hospital Wastewater

Exposure to Humans and Animals

Conjugation é? — K
e AN
Mechanisms of Exchange - (.' £
of AMRGenes  yrancormation ‘ﬁ ., # — '_-.) Spread of Antibiotic Resistant
Genes in the environment

w . Antibiotic Resistant Gene Bacteria
Transduction ”@‘ » ﬁ

Figure 3. Illustration of environmental pathways contributing to antibiotic contamination and antimicrobial
resistance (AMR) propagation in aquatic systems. (included figures are original and non-published)
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Additionally, pollutants like pharmaceuticals and industrial chemicals can enhance
HGT by affecting bacterial cell permeability or inducing stress responses. Furthermore, climate
change factors, including rising temperatures and extreme weather events, can enhance
bacterial growth and gene transfer, thereby exacerbating the spread of AMR and posing
significant public health challenges [108,109].

Numerous case studies have highlighted the prevalence of antibiotic resistance genes
(ARGs) in downstream of pharmaceutical facilities, underscoring the urgent need for stringent
environmental regulations. In Nigeria, untreated wastewater from pharmaceutical plants has
been found to harbor multiple clinically significant B-lactam resistance genes, including
blaTEM, NDM-1, OXA, IMP, and CTX-M, as well as MLS resistance genes and sulfonamide
resistance genes such as sull, sul2, and sul3 [112—-114]. Similarly, in Saudi Arabia's Wadi
Hanifah Valley, downstream water samples exhibited a high frequency of ARGs such as
tet(M), tet(B), erm(B), and sulll, indicating significant contamination from upstream
pharmaceutical discharges. In Europe, studies have detected pharmaceutical pollutants,
including antibiotics, in rivers within national parks, leading to concerns about the impact on
freshwater organisms and human health due to the promotion of antimicrobial resistance [112—
114]. According to the World Health Organization, human deaths due to antibiotic-resistant
organisms are more than those of diseases [107]. These findings underscore the crucial need
for intensified monitoring and regulation of pharmaceutical pollution to protect environmental
and public health [112-114].

The wastes from animals carry a large number of germs that can cause human disease.
Among these, many microbes can already be transformed into resistant organisms, causing
different ailments. Essentials like vegetables and fruits can also be contaminated with
antibiotic-resistant bacteria, posing a serious threat of food poisoning [115]. The World Health
Organization (WHO) estimates that bacteria are one of the most common causes of global food
poisoning. One of the reasons for this contamination may be the use of contaminated water for
irrigation. Antibiotics have been used for years to treat bacterial infections, but as many of
these bacteria have developed resistance, scientists are exploring ways to combat these
notorious microbes. Multiple factors, including antibiotic efflux from the body and the
modification of functional groups of antibiotic-modifying co-substrate enzymes, contribute to
the development of antibiotic-resistant bacteria. Also, changes in the cell surface receptors,
redox systems, and severe antibiotic stress lead to the production of resistant enzymes [115].

The various toxic reactions of antibiotics include skin rashes, serum sickness,
thrombocytopenia, erythema multiforme, hemolytic anemia, vasculitis, acute interstitial
nephritis, Stevens-Johnson syndrome, and toxic epidermal necrolysis. For example, allergic
reactions have been reported in people who consumed milk, meat, and pork, all containing
penicillin residues [116]. Furthermore, some studies have mentioned that aminoglycoside,
sulfonamide, and tetracycline residues can also cause allergic reactions [117]. For example, a
study reported that penicillin, oxacillin, cloxacillin, flucloxacillin, and amoxicillin-clavulanate
could cause hepatitis [118]. At the same time, tetracyclines can mimic acute fatty liver during
pregnancy.

Furthermore, a study has reported that nitrofurantoin could cause chronic hepatitis
mimicking chronic autoimmune hepatitis, acute cholestatic, and hepatocellular reactions [119].
Other antibiotics like Ceftriaxone are also known to cause drug-induced gallstones and
quinolone cholestasis. Sulfamethoxazole/trimethoprim is also capable of causing
hepatotoxicity, especially in patients with acquired immunodeficiency syndrome [118].
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Mutagenicity, reproductive disorders, and teratogenicity have also been reported in various
studies [120].

Various toxicity studies examine the impact of antibiotics on different organisms.

Among these, zebrafish, Daphnia magna, and C. elegans have recently been used to screen

various environmental toxicants.

Zebrafish is an animal model that the OECD has

recommended as an indicator of the ecological toxicity of contaminants in aquatic

environments. Due to its low costs, ease of maintenance, genetic capabilities, and
manipulations, it has been used in toxicity studies [121]. Table 3 below highlights some recent
toxicity studies using Zebrafish.

Table 3. Highlights some recent toxicity studies using Zebrafish.

Sr.No Antibiotics Parameters Results References
Impact on zebrafish gut health with a decrease in
. . . expression of muc2.1. Moreover, a decrease in
Tetracycline and Biochemical . o
. . OUT numbers and alpha-diversity indexes.
1 Bacteriostatic parameters and . . [122]
antibiofics gene expression Further levels of mRNA in glycolipid
metabolism genes like PK, FAS, ACCI, and
ACO increased.
Oxidative stress, Increase in Oxidative stress activity leading to
5 Bacteriostatic Antioxidant index, | damage to the liver and gills. Activation of toll- [123]
antibiotic and immune- like receptors causes inflammation and
related genes upregulation of inflammatory factors
Fluoroquinolone,
3 tetracycline, and Behavioural Acute exposure caused impacts on learning, [124]
cephalosporin studies memory processes, and aggression.
antibiotics
cophatonporin, | Sineleand
phalosporin, combined toxicity, Shortened body length, an increase in ROS
4 tetracycline, and [125]
. body length, and levels
fluoroquinolone S
S oxidative stress
antibiotics
Hepatotoxicity
. e studies, cell Liver degeneration, alteration in the size of the
> N viability, and LDH liver, and liver steatosis [126]
assay
Penicillin, like
6 diaminopyrimidines, Locomotor Significant increase in neurological motor [127]
and macrolide behavioral changes impairments, movement, speed, etc.
antibiotics
Tetracyghne, Gut microbiota and | Imbalance in gut microbiome, and alteration in
7 sulphonamide, and . . . [128]
. O gene expression immune and stress-related gene expression
macrolide antibiotics
Quinolone Survival and Dose-dependent mortahty and teratogenic
8 q . - .. effects. Followed by cardiac developmental [129]
Antibiotics cardiac toxicity .
toxicity
S Oxidative stress and immune damage to the liver
. Oxidative stress . . . . .
Sulphonamide . and gills with a decrease in gut microbiota.
9 o and immune . . [130]
Antibiotics . Moreover, pathological changes to the liver and
disorder . . ;
intestinal tissues were observed.
. Surv_lval, G_rowth, Higher doses led to growth retardation,
Fluoroquinolone biochemical Lo
10 N . malformations in zebrafish embryos, and [121]
Antibiotics alterations, and . . ;i
D5 biochemical alterations
teratogenicity
. Alteration in behavior and growth was observed.
. Neuro-behavioural . !
11 Sulfonamide chanees and Gene At environmental concentrations, genes for [131]
Antibiotic & folate synthesis and carbonic anhydrase were

macrolide,

In recent studies,
bacteriostatic,

expression

downregulated.

zebrafish models have been utilized to assess the toxicity of

quinolone,

sulfonamide, fluoroquinolone,

and tetracycline

antibiotics. Zebrafish have been used to assess organ toxicity, growth, reproduction,
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neurological defects, survival rates, and molecular alterations occurring from antibiotic
exposures, as shown in Table 3.

Daphnia is another important aquatic organism that is recommended by the EPA and
OECD for aquatic ecotoxicological studies. The widespread presence of this species in the food
web helps serve as a bioindicators for predicting health effects, due to its advantages, such as
a short reproductive cycle and ease of maintenance [132—-134]. Table 4 below depicts some
recent toxicity studies of Antibiotics using Daphnia magna.

Table 4. Depicts some recent toxicity studies of antibiotics using Daphnia magna.

Sr.No Antibiotics Parameters Results References
Tetracycline, sulphonamide, Population growth Moderate toxicity was observed in the
1 aminoglycoside, and and metabolic case of sulphonamide, aminoglycoside, [135]
bactericidal antibiotics profiles and bactericidal antibiotics.

Tetracycline antibiotic had caused
modulation effects on the microbiome

2 Tetracycline antibiotic Reproduction effects .- . . [136]
composition, causing changes in the
reproductive cycle.
Poor dietary effects at lower and
. S Effects of Diet and higher concentrations impacted the
3 Tetracycline antibiotic Antibiotics overall survival rate and reproduction [132]
cycle.
. a Mortality and gut Low mortality rates, but an alteration
4 Tetracycline antibiotic biota in the species diversity of the biota [137]
5 Fluoroquinolone and Mortality and Fatal mortality observed with injury- [138]
sulfonamide antibiotics Mutagenic Potential related responses

Early oogenesis and increased brood
size in the second birth at moderate
6 Fluoro-quinolone antibiotics | Reproductive effects doses. At higher doses, embryonic [139]
viability and offspring degradation
were more prominent.

Acute toxicity increased for individual

Antimicrobial and Acute toxicity at

7 Bacteriostatic antibiotics varying temperatures and combined exposures at higher [140]
temperatures.
Mortality, Growth, No chapges .to mortallty am.i growth.
Reproduction Alterations in locomotion, ingestion
8 Sulfonamide Antibiotics i rate, and reproduction were observed. [134]

locomotion behavior,

. . Further, inhibition of AChE and lipase
and ingestion rate

was observed.

Recent studies on Daphnia with various tetracyclines, sulphonamides,
aminoglycosides, bactericidal Fluoroquinolones, and sulfonamide antibiotics have shown
toxicity. In various studies, it was observed that the microbiome of Daphnia underwent
alterations, affecting its survival rate, reproductive cycle, and subsequent growth and diet-
related changes, as shown in Table 4.

C. elegans has been utilized as an important animal model for environmental
toxicology, as 60-80% of genes are related to humans. Few recent studies have explored the
potential toxicity effects of various sulphonamides, macrolides, tetracycline, and quinolone
antibiotics on C. elegans. Various impacts, including dose-dependent toxicity, obesogenic
effects, effects on the reproductive cycle, and the generation of oxidative stress, were observed,
indicating the risks posed by antibiotics, as shown in Table 5.

Table 5. Depicts some recent toxicity studies on antibiotics using C. elegans.

Sr.No Antibiotics Parameters Results References
Sulphonamide . Fgedmg, Growth, and . Dose-dependent inhibition is greater with
! Antibiotics | AAntioxidant Enzyme Levels with higher food plates [141]
limited/high food availability
Macrolide Lipid a.ccumulation, Lipid .Both Qiets stimula‘ged bpdy Width anq
2 Antibiotics Metabolism ELISA, Glucose triglyceride levels, with higher stimulation [142]
Metabolism ELISA, gene with live bacteria. Water-borne antibiotics
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expression of daf-2, daf-16, nor-
49, total carbohydrates, fatty acid
levels, measurement of intestinal
barrier damage, and bacterial
colonization impacts with
exposures in water and diet-borne
antibiotics in the presence of live/
inactivated bacteria.

inhibited the activities of enzymes
involved in fatty acid B-oxidation, and
diet-borne antibiotics inhibited the
activities of enzymes involved in
lipolysis, followed by stimulation of the
activities of enzymes in lipogenesis.
Moreover, waterborne antibiotics caused
the upregulation of genes. The results
pointed towards obesogenic effects with
varying diets.

Tetracycline Lifespan and aging parameters
and pat £Ing par Extended lifespan and potential anti-aging
3 . (feeding, accumulation of [143]
Macrolide . - effects
MR lipofuscin, and ATP levels)
antibiotics
Locomotion behaviors, growth, Significant decline in locomotion
apoptosis, ROS, and expression behaviors and growth. Followed by an
4 Quinolone of genes coding for heat shock increase in ROS levels and apoptotic [144]
Antibiotics proteins, tumor suppression, activity, indicating oxidative stress.
superoxide dismutase, and Increase in gene expression levels
Acetylcholine esterase indicating stress
Macrolide
and . . . Inhibited reproduction and inhibition
> Sulphonamide Multi-trans generational impacts decreased with increasing generations. [143]
Antibiotics

Different antibiotics, such as sulfonamides, tetracyclines, and macrolides, have been
shown to exhibit potential adverse effects on the development and growth of algae [146].
Studies with sulfathiazole exposure are one example that indicates their exposure might be
linked to growth retardation of the macroalgae Lemna gibba, whereas antibiotics like
aureomycin, oxytetracycline, and tetracycline were found to affect the growth of Microcystis
aeruginosa [147] substantially. The inducible production of abscisic acid is connected to the
explicit growth-inhibiting action of antibiotics. Another theory for how antibiotics impact algae
is that they hinder protein production and harm the growth of chloroplasts, as this affects
metabolism and photosynthetic ability, causing the algae's cell development and multiplication
to be suppressed and inhibited [ 148]. Additionally, bone marrow toxicity and nephropathy were
also seen in some antibiotics [149]. Multiple research studies have documented the toxic
consequences of analgesics, including naproxen, ibuprofen, diclofenac, and paracetamol. A
study has explained that environmental exposures to diclofenac can cause gill alterations and
renal lesions in rainbow trout [ 150]. Diclofenac is also known to cause renal failures in vultures
that feed on diclofenac-contaminated dead livestock [151]. Exposures of erythromycin and
oxytetracycline are also known to cause alterations in the gills [152]. In a study, atorvastatin
has been found to cause alterations in the biosynthesis and utilization of dietary fats in the
primary intestinal region of species bivalves and changes in the mitochondria of Mytulis edulis
[153]. Their presence in the environment can cause mutagenic effects, leading to the formation
of micronuclei and binuclei in the gastrointestinal tract of tadpoles [154]. Growth inhibition
was also explored in algae and cyanobacteria when they were exposed to 5-fluorouracil [155].
The problem of antibiotic residues has been found even in animal manures, for example,
Ofloxacin and Norfloxacin have been found in chickens. Moreover, Ciprofloxacin,
Enfluroxacin, Oxytetracycline, Chlorotetracycline, Sulphonamides, and Nitrofurans have also
been detected in swine, cattle, and chickens. Similarly, tetracyclines and macrolides have also
been detected in swine [156]. Furthermore, the adverse health effects of antibiotics and their
residues when they enter the human body are affected by the microbiome. This can lead to
alterations in the internal microbiome composition of the human body, resulting in disorders
such as colitis, colorectal cancer, and intestinal ailments [157].
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5. Detection Strategies for Antibiotics from the Aquatic Environment

There are various techniques for detecting antibiotics, including chromatography,
electrophoresis, and enzyme-linked immunosorbent assay. Advanced technologies have also
emerged, such as sensors for detecting antibiotics [158]. Chromatography coupled with mass
spectrometry has enabled the detection of certain pharmaceuticals in the environment at lower
concentrations [159]. For achieving better detection, more effective extraction methods are also
necessary. There are various chromatographic techniques, such as High-Performance Liquid
Chromatography with Ultraviolet or Diode Array Detection [160],
comprehensive detection and profiling of antibiotics using advanced analytical techniques,
including LC-MS, tandem LC-MS/MS, and GC-MS [161]. Table 6 below gives a summary of
various studies analyzing different antibiotics from various water matrices. The most employed

which enable

method of sample extraction was Solid Phase Extraction. The common analytical methods
employed were LC-MS/MS, UHPLC-ESI-MS/MS, and HPLC-MS for the identification and
quantification of antibiotics. The following antibiotics were examined: trimethoprim,
sulfamethoxazole, amoxicillin, azithromycin, ciprofloxacin, clarithromycin, doxycycline,
levofloxacin, penicillin, roxithromycin, and many more. The sensitivity of the techniques
employed was demonstrated by the differences in the limit of detection (LOD) and limit of
quantification (LOQ) between investigations, which ranged from as low as 0.005 ng/L to as
high as 3000000 ng/l. Antibiotic recovery rates from the samples also varied, with some

investigations reporting recoveries of up to 129%.

Table 6. Examples of chromatographic methods used for detecting antibiotics in various aquatic matrices.

Matrix Antibiotics studied Extraction Analytical LOD: LOQ (ng/L) | Recoveries (%) | Ref.
Amoxicillin 2.8,9. 77
Azithromycin 0.2,0.8 78
Ciprofloxacin 13.5,45.0 91
Wastewater Clarithromycin (C;;Sr_nl\r/llzlz\gsl 50 22,73 69
(Sewage Doxycycline Solid Phase mm x 2.0 mm ) 8.8,29.2 11 [162]
treatment Levofloxacin Extraction Pa rticle. size: 4 0.5,1.6 89
plant) Penicillin ’ 1.1,3.8 68
Roxithromycin Hm 5.1,17.1 51
Sulfamethoxazole 5.1,17.1 63
Trimethoprim 3.1,10.2 94
Ofloxacin LC-MS 29.3 142
Wastewater Sulfamethoxazole Solid Phase Column size (125 16.1 337 [163]
Erythromycin Extraction mmx2.0 mm) 12.4 ’
. . . 67.7
Carbamazepine Particle size 5 pm 2.2 g4
Cefotaxime UHPLC-ESI-MS-
Erythromycin MS
Sulfamethoxazole Column size
Seawater Lincomycin Solid Phase column (4.6 0.02 -2, 66 -113 [164]
samples Clindamycin Extraction mmx150 mm, 2.7 0.06-2.3
Tetracycline um)
Oxalic acid Particle size: 5
Sulphapyridine um
(LC-MS/MS)
Surface Ampicillin Solid Phase (Cz‘glg)ﬁnnif)e 0.02 0.59 97.4 [165]
wastewater Sulfamethoxazole Extraction . . 0.07 -1.80 96.8
Particle size: 2.6
pm
Clarithromycin, LC-MS (100 mm
Azithromycin Solid Phase x 2.1 mm) 0.1-167.2
WWTPs Amoxicillin, Extraction Particle size: 1.9 0.03 -50.6 70-120 [166]
Ampicillin pm
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Matrix Antibiotics studied Eﬁg?ﬁggn A;ilt)lflt;fial LOD: LOQ (ng/L) Recoveries (%) | Ref.
Clarithromycin Oasis HLB - IJ(?\/I\;IIEQ/I?Z ?1 8 037 -88
WWTPs Azithromycin Solid Phase & A ) ' 46-103 [167]
Levofloxacin Extraction) 150 mm) Particle 12-29
size Sum
Clarithromycin Cilastatin HPLC -MS
Trimethoprim Solid Phase Column size:(
HWW Ciprofloxacin Extraction 150mm x 2 mm ) 550-3000000 61-10.0 [87]
Sulphapyridine Particle size: 4 35000-43000
Sulfamethoxazole um
Chloramphenicol
Thiamphenicol
Florfenicol
Sulfadiazine
Sulphapyridine
Sulfamethoxazole
Sulfathiaque UPLC-MS/MS
Surface Sulfamerazme . Column size (100
Sulfamethazine Solid Phase 0.01-1.18
water . . mm x 2.1 mm 62-129 [168]
Norfloxacin Extraction . . 0.03-1.68
samples . . Particle size:1.8
Ciprofloxacin
Enrofloxacin um
Ofloxacin
Tetracycline
Oxytetracycline
Chlortetracycline
Erythromycin
Roxithromycin
Ciprofloxacin
Ceftazidime
Meropenem
Amoxicillin
Lincomycin
Clindamycin UHPLC-MS/MS
Raw and Erythromycin . C18 (3.0 mm
treated Azithromycin SEO;t‘ria};‘iz;e 100mm) (5-15) 84.5-105.6 [169]
wastewater Clarithromycin Particle size: 2.7
Tylosin pm
Trimethoprim
Tetracycline
Minocycline
Chlortetracycline
Oxytetracycline
Wastewater Sulfadimifliljne HPLC-ES-
(Industrial Sulphapyr{dlne . MS/MS
discharge & Sulfadiazine Solid Phase C18 column (150 0.02-0.08 61-89 [170]
slaughterho Sulfamethoxazole Extraction mm x 2.1 mm) 0.05-0.2
Ofloxacin Particle size:3.5
use) .
Doxycycline pum
LC-MS/MS
Wastewater Cla.rithromy.cin Solid Phase Column size:(50 07636 88-91 [171]
S Trimethoprim Extraction mm x 2.1 mm)
Particle size:5um
Trimethoprim
Spectinomycin
Ampicillin
Oxacillin LC-MS/MS
Raw Sulfamethoxazole Solid Phase Column size:(50
hospital Sulfamethazine Extraction mm X 2.1 0.005-0.04 68-111 [56]
wastewater sulfadiazine mm)Particle 0.017-0.220
Sulphonamides size:1.8um
Penicillin
Erythromycin
Tetracycline
Wastewater (LC-MS/MS)
samples Ampicillin Solid Phase | CS12A (4x250 20-590
(from . mm) 72.1-97.4 [172]
. Sulfamethoxazole Extraction . . 70-1800
public Particle size: 2.6
hospitals) pm)
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Other modern methods also exist for detecting antibiotics. ELISA is a well-known
method for screening antibiotics. The sensitivity of this test depends on the reaction’s strength.
Different enzymes, including D-glucose oxidoreductase, peroxidase, pyruvate dehydrogenase,
alkaline phosphomonoesterase, and -galactosidase, are employed. The color reaction occurs
when the enzyme catalyzes the substrate, and based on the reaction, an observation is made.
Various ELISA methods have been developed for the detection of antibiotic residues, including
fluoroquinolones, chloramphenicol, tetracyclines, and sulfonamides [173]. An ELISA method
has also been developed for detecting penicillin in milk samples [174]. Another sensitive
ELISA method has been devised to detect 1-amino-hydantoin in fish, shrimp, pork, and chicken
samples. For the detection of banned antibacterial drugs, such as bacitracin and virginiamycin,
in feed, ELISA has also been utilized [175].

Immunoassays have been utilized for screening various antibiotics in food samples,
which depicts a concerning area in the antibiotic contamination research. Antibiotics such as
B-lactamase inhibitors, Fluoroquinolones, Aminoglycosides, tetracyclines, sulfonamides,
chloramphenicol, lincosamides, and macrolides have been detected in various food matrices,
including milk, beef, chicken, pig muscles, fish, eggs, honey, and different animal feeds, using
the ELISA technique. There are other reports and studies utilizing different techniques, such
as radio-labeled antibody assays and gold nanoparticle-based lateral flow assays, as well as
other BIOCHIP/APTA biosensor methods, for detecting antibiotics in various food matrices,
including milk, wastewater, honey, eggs, swine, fish, and sea cucumber. Immunoassays are
utilized for the detection of antibiotics, as they offer advantages such as high sensitivity, low
cost, reduced labor intensity, ease of use, on-site screening, and improved throughput [173].

A chemiluminescent immunoassay is a type of assay in which a reaction occurs between
the luminescent enzyme and substrate, or between the antigen and antibody, based on a
chemiluminescent reaction. This method has been widely utilized for antibiotic detection.
Different labeling enzymes, such as ALP (alkaline phosphatase) and HRP (horseradish
peroxidase), are used as substrates in studies involving TMB (tetramethylbenzidine)/Luminol,
among others. This technique has been widely used for the determination of macrolides in
plasma and phosphate-buffered saline [176]. Additionally, the use of a multi-analyte chip
immunoassay for the simultaneous screening of four different antibiotics has been reported
[177]. Moreover, radioimmunoassay is a type of assay that uses isotope-labeled and unlabeled
antigens that react competitively with antibodies developed in a modified RIA method for the
screening of TCs in serum, urine, milk, and tissue, and also in environmental samples [178].

Furthermore, fluorescence immunoassay/ fluorescence polarization immunoassay is a
method that utilizes a fluorophore linked to a specific antigen to detect and identify antibiotics
using a fluorescent method. This method has been used to detect sulphonamides, tetracycline
B-lactamase, quinolones, Chloramphenicol, Streptomycin, Erythromycin, Spiramycin,
Tilmicosin, Tylosin, Clenbuterol, and Ofloxacin [179]. A one-step method for determining
fluoroquinolones based on the production of monoclonal antibodies has also been developed
for detecting cefalexin, cefadroxil, clinafloxacin, and gentamicin [180]. Additionally, colloidal
gold immuno-chromatographic assay (CGIA) has been employed for detecting tetracycline,
sulfonamides, and quinolone residues in milk samples. Another CGIA method for detecting
streptomycin residue in milk and swine urine was reported [181].

A study has also reported the development of a kit based on a lateral flow antibody-
based assay for the simultaneous detection of fluoroquinolones, B-lactam antibiotics,
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sulfonamide derivatives, and tetracyclines in fish samples, utilizing antigen and antibody
interactions [182].

There have been major developments in the past few years in the detection of antibiotics
and their residues. Techniques such as chip technology, immunosensors, and surface plasmon
resonance-based immune technology have been explored for detecting antibiotic residues.
Biochip assay is another emerging technique based on receptors. The biochip method has been
reported for detecting residues of aminoglycosides, macrolides, and lincosamides in honey
samples across various concentration ranges [183].

6. Remediation Strategies for Antibiotic Waste

Proper waste management practices are essential to prevent harm to human health and
the environment. Various approaches, such as prevention, minimizing production, reusing,
recycling, energy recovery, and proper disposal, can be employed to manage pharmaceutical
waste effectively [184]. There are well-established methodologies used in various research
studies for removing antibiotics from different matrices, including hospital wastewater,
domestic wastewater, water reclamation facilities, synthetic wastewater, laboratory
wastewater, and aquaculture wastewater [12]. Conventional strategies for antibiotic removal
encompass physical, chemical, and biological methods, including settling/precipitation,
flocculation, membrane separation, sorption and biosorption onto activated carbon, the
activated sludge process, and chemical disinfection. The chemical-physical removal methods
include the removal of antibiotics by substrates like zeolite, shucks, and volcanic rock,
followed by other adsorption methods. It also includes the utility of nanoparticles coated with
different polymers, such as liposomes or dendrimers, for removing antibiotics [185].

Another technique is adsorption, which can remove antibiotics from environments such
as soil, sediments, and naturally occurring minerals [186]. ZnCl,-modified biochar, activated
carbon, multi-walled nanotubes, and graphene oxides have been utilized in various studies for
the efficient adsorption of antibiotics [187]. Likewise, hydrolysis is another technique that can
be used for the degradation of organic substances, such as amides and esters. Furthermore, UV-
visible irradiation from sunlight also plays a crucial role in degrading certain antibiotics in
aquatic water bodies. Another method involves the Adsorption method using Activated
Carbon, which has been reported to be effective for removing most antibiotics [188]. Studies
have utilized fine-grain activated carbon and large-particle activated carbon for the removal of
antibiotics from hospital wastewater and other wastewater sources. Other studies have utilized
emerging methods like the use of zeolites [189]. Methods such as electrochemical oxidation,
ozonation, and the Fenton process employ the same principle of producing free radicals for
removing antibiotic residues, but through different processes [190].

Other removal methods involve membrane-based separation techniques and advanced
oxidative treatments, such as ozone oxidation, ultraviolet degradation, photocatalytic
oxidation, and Fenton chemistry[191]. Microbubble (MB) based multiple approaches have
been developed for the elimination of diverse ecological pollutants. These microbubbles, due
to their properties such as surface area and durability, were employed in ozone oxidation to
eliminate pollutants [192]. Additionally, methods like UV/H202 are conventional and utilize
UV to produce hydroxyl radicals via H202, which can scavenge antibiotics. Additionally,
technique like membrane technology is based on reverse osmosis, which is promising as they
are capable of removing a broad range of pharmaceutical compounds. Moreover, a combination
of membranes with oxidation processes has the capability for efficient removal [193].
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Furthermore, remediation strategies have been reported in various studies, like
oxidative remediation (chlorination, advanced oxidation, ozonation, fentanyl process,
photolysis, photocatalysis, electrochemical processes), adsorption, membrane filters,
bioremediation (using bacterial methods, fungal methods, algal methods, phytoremediation,
microbial fuel cells, bioreactors, and enzyme filters), and hybrid methods [194].

Furthermore, filtration methods such as Ultrafiltration (UF), Nanofiltration (NF), and
Reverse Osmosis (RO) have also been reported for the removal of antibiotics [50]. Moreover,
another suitable method is the utilization of biowaste, such as sawdust, green nano-adsorbents,
biochar, and microbial fuel cells, which have also been employed for the effective removal of
antibiotics from waste [195].

Other emerging studies discuss the potential of nanotechnology. Nano-photocatalytic
degradation studies of antibiotics using different nano-photocatalysts have shown potential for
the degradation of various antibiotics [196]. Different antibiotics have been remediated using
nano-photocatalytic activities from aquatic ecosystems, such as Penicillin G, Tetracyclines,
Ofloxacin, Amoxicillin, and Ciprofloxacin [196].

Another emerging area of research is biodegradation, which utilizes microbial
degradation to remove antibiotics [197]. Biodegradation of antibiotics occurs due to two
factors: biotic and abiotic factors. The biotic factors include the microorganisms, and the
abiotic factors contribute to the hydrolysis, sorption, oxidation, photolysis, and reduction.
[198]. Moreover, bioremediation can be performed either ex-situ or in-situ. The in-situ
bioremediation method leads to the removal of contamination on the spot, whereas the ex-situ
method involves removing the contaminants elsewhere [199]. Recently, algae have been
widely used for bioremediation of antibiotics due to their cost-effectiveness, non-intrusiveness,
safety, and effectiveness in removing antibiotics. Moreover, biochar is another useful adsorbent
derived from the pyrolysis of biomass rich in carbon, which is used for the removal of
antibiotics [200].

L]

Remediation Methods

Absorption
Antibiotic Studies Method

Microbubble
Method

@ Oxidationand Reversa
Reduction

/()

Biochemical Methods Chromatographic Methods
Ozonation

Fenton
Process

Osmosis

Immunoassays ELISA based Detection Method

iltrati C Enzyme based
& flocculation Biodegradation
Ultrafiltration Method

Culture Based Methods Sensors

Figure 4. Different detection and remediation methods are used in antibiotic studies.

Interestingly, enzyme-based biodegradation is an environmentally friendly approach,
as it offers economical and exceptionally effective strategies for removing environmental
pollutants. Enzymes such as lignin-degrading peroxidases, phenoloxidases, horseradish
peroxidase, manganese-activated peroxidases, and polyphenol oxidases have been developed
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to achieve this [201]. A study has engineered an innovative hybrid bioreactor by integrating
immobilized laccases with tyrosinase enzyme aggregates on a microfiltration membrane for
the removal of pharmaceutical compounds [202]. Figure 4 below summarizes some of the
common detection and remediation techniques used in antibiotic studies.

7. Discussion

Antibiotics are typically present in surface water at extremely small concentrations,
typically in the nanograms per liter level or even lower. Since routine monitoring would not be
practical or affordable, identifying such minute quantities requires extremely sensitive
analytical methods and equipment. The detection and evaluation of antibiotics may also be
hampered by the presence of several organic and inorganic components in surface water
samples [203]. Surface water contains a wide range of antibiotic classes that originate from
various sources, including human and animal waste, agricultural runoff, and pharmaceutical
production. It can be challenging to assess the toxicity of an antibiotic and comprehend the
effects of multiple antibiotics when used in combination [204].

Studies should be conducted to explore antibiotic pollution and its correlation in the
aquatic environment, taking into account other environmental factors. Monitoring of point and
non-point sources of antibiotic contamination is necessary to raise awareness about antibiotic
pollution in aquatic water bodies. It is essential to develop a strategic plan for conducting
monitoring studies at relevant locations, followed by the enhancement of the performance of
existing wastewater treatment plants. More studies need to focus on the ecotoxicological
research of antibiotics in the environment.

Moreover, surface water samples are complex matrices that contain various ions,
dissolved organic matter, and suspended particles. These matrix components may influence the
extraction, separation, and detection of antibiotics, potentially impairing the analysis's
sensitivity and accuracy. Beta-lactams, fluoroquinolones, macrolides, and sulfonamides are a
few examples of the numerous types of antibiotics that exist, each with distinct chemical
properties. To build a comprehensive strategy for monitoring all antibiotics, it may be
necessary for each class to have its unique analytical procedures for detection [205].

Antibiotics in surface water can undergo various transformation processes, such as
photodegradation, hydrolysis, and microbial degradation. When compared to the parent
molecules, these activities may result in the formation of metabolites or degradation products,
each of which may have unique chemical properties and detection challenges [206]. Assessing
the ecological relevance of antibiotic toxicity studies is crucial to understanding the potential
impacts on ecosystems. However, replicating real-world scenarios in laboratory experiments is
difficult, and extrapolating results from controlled environments to complex aquatic
ecosystems can be challenging [206]. Current regulatory frameworks often focus on human
health risks associated with antibiotics rather than their ecological impacts. Limited regulatory
guidelines and monitoring programs specifically targeting antibiotics in surface water can
hinder comprehensive toxicity assessments and appropriate management strategies [207]. To
address antimicrobial resistance (AMR), several regulatory frameworks and initiatives have
been established at the regional and global levels. The European Union's Water Framework
Directive requires the monitoring and regulation of pollutants, including pharmaceuticals, to
ensure the protection of water quality. Similarly, the Drinking Water Directive provides
stringent standards for microbiological and chemical parameters in drinking water. Moreover,
WHO's Global Action Plan on AMR outlines a strategic approach to combat AMR through a
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One Health framework, addressing human, animal, and environmental health. These
frameworks underscore the importance of coordinated efforts and stringent policies in
mitigating the spread of AMR [208].

One reason for antibiotic pollution may be related to national income. Low-income
countries often have limited access to wastewater treatment plants, resulting in a higher
concentration of antibiotics in the environment [156].

Insufficient removal of emerging molecules in treatment facilities also results in the
passage of polluted water into surface water systems (Lakes, Ponds, Rivers, and inland water),
which could pose serious ecological and health risks to the ecosystem. The public's acceptance
of the wastewater reuse guiding policies needs to be increased. For example, amoxicillin levels
varied significantly, ranging from below detection limits to 0.1726 pg/L during treatment, and
then decreased to below detection limits to 0.0625 pg/L after treatment, considering the
development of compounds, such as antibiotics, in the water sources [47].

Furthermore, one of the major challenges is to calculate the amount of exposure per
amount of antibiotics present in water used for drinking, and determining the potential risks to
human health has been hindered by the dearth of data concerning the large variety of human
and veterinary drugs now in use. Monitoring projects are resource-intensive with costs, people
requirements, and infrastructure. In addition to the problem, there are no standardized sampling
and analytical methodologies to support monitoring research. Therefore, to comprehend the
impact of low levels of pharmaceuticals in drinking water on human health, future research
should focus on developing practical methods for prioritizing pharmaceuticals within an overall
risk assessment [209]. Research on the occurrence of antibiotics in various regions can
contribute to understanding the global status of antibiotic pollution. The biotransformation and
bioaccumulation mechanisms of these antibiotics in aquatic species and higher-order
organisms require in-depth exploration.

Comprehensive toxicity data for many antibiotics, especially in environmental
contexts, are limited. Toxicity studies have primarily focused on acute effects and a few
commonly used antibiotics, while long-term and chronic effects, as well as the potential
ecological impacts of exposure, are not well understood for many antibiotics. There is no
standardized protocol or test specifically designed for assessing the toxicity of antibiotics in
surface water [210]. Existing toxicity testing methods, such as acute and chronic toxicity tests
with aquatic organisms, do not fully capture the complexities and long-term effects related to
environmental exposure to antibiotics.

Molecular-level studies should be encouraged to identify pathways and biomarkers
involved during antibiotic exposure from the environment, the toxic impact of antibiotics, the
metabolic pathways involved, and the epigenetic alterations that occur during contamination
[211]. The co-existence of antibiotics with other toxicants also needs to be evaluated to assess
toxic impacts [212]. Moreover, antibiotics can function in various ways, including preventing
the development of bacterial cell walls, delaying protein synthesis, and interfering with DNA
replication. Hence, identifying the precise processes by which antibiotics cause harm to non-
target organisms and ecosystems is a challenging endeavor that requires in-depth study and
analysis [213].

Antibiotic toxicity may be influenced by several environmental factors, including pH,
temperature, exposure to sunlight, and the presence of other compounds or contaminants in the
water. These factors can affect the stability, bioavailability, and toxicity of antibiotics, making
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it challenging to isolate and evaluate their individual effects [213]. Hence, research in this area
also needs to be explored.

LC with MS is currently the most capable method for antibiotic identification, which
opens further research areas to improve antibiotic detection. Various mass spectrometers are
used for the analysis of antibiotic residues, such as single-quadrupole (Q), linear ion trap (LIT),
time-of-flight (TOF), and quadrupole ion trap (QIT) [214]. Similarly, UV/visible spectroscopy
has been widely used for antibiotic analysis, Cefazolin, Ceftazidime, Meropenem, Ceftriaxone,
Dicloxacillin, Ertapenem, Cephalothin, Benzylpenicillin, Flucloxacillin, Piperacillin,
Ampicillin, and Ticarcillin [215]. Hence, method development using chromatographic
techniques can provide better detection limits for the detection of antibiotics in our
environment.

Additionally, several studies have reported that the most popular method for detecting
antibiotic residues is liquid chromatography combined with tandem mass spectrometry. Other
studies have reported the use of UPLC-MS/MS for detecting daptomycin content in human
plasma and breast milk [216]. Moreover, gold nanoparticles (AuNPs) possess useful optical
properties and a high extinction coefficient, making them suitable for the identification of
different ions and small molecules [217]. The quantity of cefixime has been measured by
several researchers using an AuNP solution via SPR. Other applications of gold nanoparticles
include the determination of kanamycin, which holds a promising future [218].

Moreover, a study has proposed a bifunctional, chemically customized polymer-based
sensor for the rapid colorimetric and fluorescence identification of norfloxacin in water
samples [219]. Additionally, scientists have developed a cellulose-supported microchip for
tagging functional nucleic acids, combined with a rival fluorescent lateral-flow assay for
identifying ampicillin [220]. A study has also proposed a chemiluminescence method,
employing a fluorometric assay with ruthenium chloride (IV) and methoxylated Cypridina
luciferin analogs (MCLA) to determine fluoroquinolone compounds in milk [221]. Another
investigation introduced nanocomposites (IL/Chit@MGO) derived from biofunctionalized
ionic liquids, chitosan, graphene oxide, and magnetic nanoparticles, which were applied in
chemiluminescent aptamer-based sensors for tetracycline detection [222].

Moreover, ELISA is an inexpensive and rapid monitoring tool capable of detecting
antibiotics and their by-products in water samples, and their use should be encouraged.
Additionally, these tests require a small sample volume and are portable in the field. Other
emerging techniques for detecting antibiotics include pulsed electrochemical detection (PED),
charged aerosol detector (CAD) [223], and evaporative light scattering detector (ELSD) [224].
These are promising techniques that require further exploration. Future studies for antibiotic
analysis should focus on the areas of green solvents and green extraction techniques. More
research should also focus on photolysis, which is used for the removal of antibiotics. In many
scenarios, the toxicity of photoproducts has not been explored, providing a research
perspective.

Research should focus on the development of methods with high throughput, high
sensitivity, and improved sample pretreatment for the rapid processing and detection of
antibiotics in environmental matrices. Additionally, research is needed to investigate the
integration of various detection methodologies to enhance the detectability of antibiotics in
environmental samples [225]. Lastly, low and middle-income countries lack skilled medical
workers and focus less on monitoring antibiotic usage, leading to their occurrence in food
products and the environment [226].
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8. Conclusion

The scope of antibiotic contamination is not new, but modern integrative sciences are
required to bring novelty to tackle this problem. The review discussed the issue of antibiotic
contamination in aquatic water bodies, on which most life depends. This review encompasses
various sources that contribute to the contamination of aquatic water bodies. Furthermore, it
provides recent examples of the global burden of antibiotic contamination, as well as the
important model organisms used for assessing its toxicity. It discusses both traditional and
modern remediation strategies. Antibiotics have been used widely in our society for years since
their discovery. Regulations need to be implemented to address the overuse of antibiotics,
safeguarding the environment and the health of humans and animals from antibiotic pollution
in aquatic water bodies and their misuse. International Organizations need to encourage
countries to reduce their antibiotic usage in humans and animals to a minimum. Additionally,
emphasis needs to be placed on surveillance and research of antibiotics to strengthen the
healthcare and regulatory sectors. Awareness of the public sector in this aspect needs to be
explored as well. Studies should be encouraged on the monitoring of antibiotics and their
byproducts in the environment to evaluate their health effects. Global guidelines need to be
developed for the rational use of antibiotics. Adequate training and strict infection-control
parameters need to be established to minimize and control antibiotic pollution. Specific
legislation and guidelines need to be established and implemented to tackle antibiotic
prescriptions at hospitals, as well as the proper disposal and collection of unused or expired
drugs, which also require regulation.

Traditional extraction methods employ harmful solvents that are not environmentally
friendly, raising concerns about indirect environmental pollution. Future studies on antibiotic
analysis should also focus on areas of green extraction methods using environmentally friendly
solvents to prevent indirect environmental contamination. Innovative studies, such as
systematic surveillance for environmental monitoring at the regional level, should be
encouraged to foster a comparative research environment for understanding the environmental
contamination of antibiotics.
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