Application of Chitosan/Fe$_3$O$_4$ Nanocomposite as Biosensor

Taha M. Tiama 1, Hanan Elhaes 2, Medhat A. Ibrahim 3,*

1 Basic Science Department, October High Institute for Engineering & Technology, Misr University for Science and Technology, 6th October City, Cairo, Egypt
2 Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
3 Molecular Spectroscopy and Modeling Unit, Spectroscopy Department, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt
* Correspondence: medahmed6@yahoo.com; Scopus Author ID 8641587100

Received: 25.11.2020; Revised: 4.01.2021; Accepted: 11.01.2021; Published: 19.01.2021

Abstract: Modified chitosan with metal oxides show a potential application in many areas of research. Accordingly, a model molecule of three chitosan units was modified with Fe$_3$O$_4$ through the chitosan's O-linkage (Cs). The modified structure is supposed to interact with alanine amino acid as a protein structure model. Density functional theory method at B3LYP level was used with 6-31G(d,P) basis set. At this level, the total dipole moment (TDM), the bandgap energy as the difference between the highest and lowest molecular orbital (HOMO/LUMO bandgap). The molecular electrostatic potential (MESP) is mapped at the same level of theory. HOMO/LUMO for Cs was 2.9217 eV modified for Cs/Fe$_3$O$_4$ to be 0.5919 eV. As far as it interacts with alanine, it became 0.3415 eV, which indicated a sharp decrease in HOMO/LUMO energy. The MESP map of Cs/Fe$_3$O$_4$ indicated that chitosan's reactivity is improved as the electronegativity increased. These results dedicated Cs/Fe$_3$O$_4$ as a sensor for the amino acid alanine.

Keywords: DFT; Protein; Biosensor; Cs/Fe$_3$O$_4$.

© 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Chitosan is described as a biopolymer derived from chitin and a structural polymer for all arthropods’ external structures and cephalopods’ internal structures. It can be obtained from a shrimp shell by chitin’s deacetylation in a basic medium [1]. Due to its non-toxic, biocompatible, and biodegradable properties, chitosan is widely used as biosensors according to its ability to form film [2,3]. The sensor is interpreted as a device that translates biological, physical, or chemical information into a quantifiable signal. One of the electrochemical sensors’ characteristics is being very sensitive and selective for different types of analyzes [4]. It is also used for faster and easier analysis than traditional analytical techniques such as chromatography, mass spectrometry (MS), and nuclear magnetic resonance (NMR). The macromolecule chain of chitosan can be easily modified by using nanoparticles and conductive polymers to produce compounds with a high electron transfer rate and a specific surface area to develop new electrochemical sensors [5,6]. Also, due to the presence of free amine and alcohol groups, chitosan is widely used to inhibit biomolecules such as enzymes [7], DNA, and antibodies/antigens for the preparation of electrochemical biosensors [8]. Chitosan is a prominent candidate for preparing Molecularly imprinted polymer (MIPs) due to the presence
of its amine and alcohol groups that can interact with different types of crosslinkers and form specific cavities for many types of analyzes. Molecularly printed chitosan (MICs) is widely applied to develop powerful electrochemical sensors [9,10]. The anti-microbial activity of chitosan has been described and spread widely in recent years for its action as an antagonist to a wide range of microorganisms. It fights many parasites and reduces inflammatory activity [11]. Chitosan is used in many different fields due to its different properties, especially being multi-layered and considered distinct from natural polymers. It is used in applications in economically promising sectors such as food [12], cosmetics [13], pharmaceutical [14], agricultural industries [15], and in developing biosensors and gas sensors [16, 17]. The use of chitosan as a drug packaging material has been studied and developed through the existing research work.

On the other hand, magnetic nanoparticles (NPs) can be divided into metal NPs, metal oxide NPs, and alloy NPs. Minerals NPs include iron, cobalt, and nickel [18]. Metal oxide NPs contained iron oxides (γ-Fe₂O₃ and Fe₃O₄) and ferrite (CoFe₂O₄ and Mn0.6Zn0.4Fe₂O₄) [19]. The NPs alloys include Fe Co and Fe Pt [20]. MNPs also have an important role in removing and mitigating toxic pollutants, separation of membranes for water treatment and purification. Researchers use MNPs to stop biomolecules' movement (antibodies, proteins, enzymes, etc.) and the simple, fast, cheap, and effective separation of target biomolecules [21-22]. Because MNPs possess a high surface area to volume ratio and a high binding rate to the detector material, the magnetically controllable aggregation and dispersion can result, making pre-concentration, purification, and nucleic acid separation easy [23-24]. MNPs have good dissociation potential, which can bind biomolecules quickly and effectively. The binding is reversible, and the assembly and dispersion can be controlled. Active substances such as bioactive adsorbents or other surface-attached bonds of MNPs can be combined with specific biomolecules, such as enzymes, DNA, and proteins, and separated under the influence of an external magnetic field [25-28]. Biosensors contain functional proteins, nucleic acids, or cellular organelles, or they can be whole living cells. They may be fixed ("immobile") on the surface of a physicochemical transducer that has the ability to translate the specific interactions of a fixed biological entity with its corresponding binding partner (Analytical) The concentration in electrical signals can be measured [29, 30]. It is stated earlier that molecular modeling is used effectively for elucidating molecular structures for biopolymers such as cellulose [31-32], sodium alginate [33], chitosan [34-36], as well as many other systems and molecules [37-39]. The present work is conducted to study the possible application of modified chitosan as a sensor for protein.

Accordingly, three units of chitosan are modified with Fe₃O₄. The interaction is formed through the O-linkage to produce chitosan/Fe₃O₄ nanocomposite. The studied composite is supposed to interact with alanine as a model molecule for protein. Physical parameters such as total dipole moment and HOMO/LUMO band gap energy were calculated at B3LYP/6-31G(d,P). Furthermore, the molecular electrostatic potential was mapped at the same level of theory.

2. Materials and Methods

2.1. Computational details.

All the studied structures were subjected to calculations with Gaussian09 program [40] using a personal computer at the Spectroscopy Department, National Research Center, Egypt.
All proposed structures are optimized at B3LYP/6-31G(d,p) [41-43] basis set. Total dipole moment (TDM), the difference between highest and lowest molecular orbital (HOMO/LUMO band gap), and molecular electrostatic potential (MESP) are calculated at the same level of theory.

3. Results and Discussion

3.1. Building model molecules.

Chitosan model molecule is indicated in figure 1; chitosan is consisting of three units. As indicated in Figure 2, chitosan interacts with Fe₃O₄ through the O-linkage forming chitosan/Fe₃O₄ composite. The chitosan/Fe₃O₄ composite interacts with protein so that alanine is chosen as a model molecule for protein. Figure 3 presents an interaction between chitosan/Fe₃O₄ composite and alanine. The interaction is supposed through the H of the NH₂. The reactivity of chitosan and its composite are described in terms of total dipole moment (TDM), HOMO/LUMO bandgap energy, and molecular electrostatic potential (MESP). Early that the reactivity of a given chemical and/or biological compound could be correlated with their TDM and HOMO/LUMO values [44-45]. While mapping MESP is an important step to understand the active sites of a given biological molecule [46-47]. Accordingly, the chitosan/Fe3O4 composite's ability to act as a protein sensor is tested with B3LYP/6-31G(d,p) through the studied physical parameters.

![Figure 1](https://nanobioletters.com/)

Figure 1. Model molecule for chitosan, which consists of 3 chitosan units.

![Figure 2](https://nanobioletters.com/)

Figure 2. Model molecule for chitosan interacted with Fe₃O₄ through the O-linkage.
Figure 3. Model molecule for chitosan/\text{Fe}_3\text{O}_4\) interacting with amino acid alanine through the H of the \text{NH}_2.

Table 1 presents the calculated TDM as Debye and HOMO/LUMO energy (eV) for chitosan, chitosan/\text{Fe}_3\text{O}_4\ composite, and chitosan/\text{Fe}_3\text{O}_4\ composite/alanine. As indicated in the table, the TDM of chitosan is influenced strongly through the addition of \text{Fe}_3\text{O}_4\ and \text{Fe}_3\text{O}_4\/alanine. Where TDM decreased from 15.2472 Debye to 8.6087 Debye for chitosan/\text{Fe}_3\text{O}_4\ composite and to 11.1364 Debye for chitosan/\text{Fe}_3\text{O}_4\ composite/alanine. Meanwhile, HOMO/LUMO bandgap of chitosan decreased from 2.9217 eV to 2.9217 and 0.3415 eV for chitosan/\text{Fe}_3\text{O}_4\ composite and chitosan/\text{Fe}_3\text{O}_4\ composite/alanine, respectively. Figures 4-a, 5-a, and 6-a present the distribution of electrons within the orbitals (i.e., HOMO/LUMO bandgap energy) for chitosan, chitosan/\text{Fe}_3\text{O}_4\ composite, and chitosan/\text{Fe}_3\text{O}_4\ composite/alanine, respectively. These changes in the TDM and bandgap energy indicated that chitosan's reactivity is improved due to interaction with \text{Fe}_3\text{O}_4. The chitosan/\text{Fe}_3\text{O}_4\ composite can be used as a sensor for alanine amino acid.

<table>
<thead>
<tr>
<th>Structure</th>
<th>TDM (Debye)</th>
<th>ΔE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs</td>
<td>15.2472</td>
<td>2.9217</td>
</tr>
<tr>
<td>Cs/\text{Fe}_3\text{O}_4</td>
<td>8.6087</td>
<td>0.5919</td>
</tr>
<tr>
<td>Cs/\text{Fe}_3\text{O}_4$/\text{Alanine}$</td>
<td>11.1364</td>
<td>0.3415</td>
</tr>
</tbody>
</table>

Additionally, molecular electrostatic potential (MESP) is calculated for all structures as presented in figure 4-b, 5-b, and 6-b for chitosan, chitosan/\text{Fe}_3\text{O}_4\ composite, and chitosan/\text{Fe}_3\text{O}_4\ composite/alanine, respectively. MESP is considered a powerful method for describing the distribution of electrons within the studied structures. Where it defines the active sides present in the molecule. Usually, MESP is indicated by a color mapping ranging from red, orange, yellow, green, and blue, where the red color refers to the most active site present, while the yellow and blue refers to the neutral and electron-positive side. Increasing the intensity of the red color indicates that the electronegativity of the studied structure increased, i.e., it becomes more reactive as presented in figures 4-b, 5-b, and 6-b its clear that the red color increased within the proposed structure of chitosan as a result of interaction with \text{Fe}_3\text{O}_4\ and alanine, respectively.
4. Conclusions

Chitosan is modified with Fe₃O₄ forming nanocomposite, possibly applied as a biosensor for protein. The application of chitosan/ Fe₃O₄ as a sensor for alanine as a model molecule for protein is studied at B3LYP/6-31G(d,P). Such sensitivity is studied in terms of TDM, HOMO/LUMO energy gap, and MESP. Based on the obtained results, it is concluded that chitosan/ Fe₃O₄ can be used as a biosensor for alanine amino acid where HOMO/LUMO band gap energy decreased sharply and reached 0.3415 eV upon interaction with alanine. Additionally, MESP results indicated that the reactivity of chitosan is improved as the electronegativity increased.

Funding

https://nanobioletters.com/
This research received no external funding.

Acknowledgments

This research has no acknowledgment.

Conflicts of Interest

The authors declare no conflict of interest.

References

